Oracle Database 11g: SQL
Fundamentals |

Volume | » Student Guide

D49996GC11
Edition 1.1
April 2009
D59980

ORACLE’

Authors

Puja Singh
Brian Pottle

Technical Contributors
and Reviewers

Claire Bennett
Tom Best

Purjanti Chang
Ken Cooper
Laszl6 Czinkoczki
Burt Demchick
Mark Fleming
Gerlinde Frenzen
Nancy Greenberg
Chaitanya Koratamaddi
Wendy Lo
Timothy Mcglue
Alan Paulson
Bryan Roberts
Abhishek Singh
Lori Tritz

Michael Versaci
Lex van der Werff

Editors

Raj Kumar

Amitha Narayan
Vijayalakshmi Narasimhan
Graphic Designer

Satish Bettegowda

Publishers
Sujatha Nagendra
Syed Ali

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government's rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Contents

Preface

I Introduction
Lesson Objectives 1-2
Lesson Agenda [-3
Course Objectives |-4
Course Agenda I-5
Appendixes Used in the Course |-7
Lesson Agenda I-8
Oracle Database 11g: Focus Areas |-9
Oracle Database 11g [-10
Oracle Fusion Middleware 1-12
Oracle Enterprise Manager Grid Control 10g 1-13
Oracle Bl Publisher 1-14
Lesson Agenda 1-15
Relational and Object Relational Database Management Systems 1-16
Data Storage on Different Media [-17
Relational Database Concept 1-18
Definition of a Relational Database 1-19
Data Models [-20
Entity Relationship Model [-21
Entity Relationship Modeling Conventions - [-23
Relating Multiple Tables [-25
Relational Database Terminology 1-27
Lesson Agenda 1-29
Using SQL to Query Your Database [-30
SQL Statements 1-31
Development Environments for SQL 1-32
Lesson Agenda 1-33
The Human Resources (HR) Schema 1-34
Tables Used in the Course 1-35
Lesson Agenda [-36
Oracle Database 11g Documentation [-37
Additional Resources [-38

Summary [-39
Practice I: Overview [-40

Retrieving Data Using the SQL SELECT Statement
Objectives 1-2

Lesson Agenda 1-3

Capabilities of SQL SELECT Statements 1-4
Basic SELECT Statement 1-5

Selecting All Columns 1-6

Selecting Specific Columns 1-7

Writing SQL Statements 1-8

Column Heading Defaults 1-9

Lesson Agenda 1-10

Arithmetic Expressions 1-11

Using Arithmetic Operators 1-12

Operator Precedence 1-13

Defining a Null Value 1-14

Null Values in Arithmetic Expressions 1-15
Lesson Agenda 1-16

Defining a Column Alias 1-17

Using Column Aliases 1-18

Lesson Agenda 1-19

Concatenation Operator 1-20

Literal Character Strings 1-21

Using Literal Character Strings 1-22
Alternative Quote (q) Operator 1-23
Duplicate Rows 1-24

Lesson Agenda 1-25

Displaying the Table Structure 1-26

Using the DESCRIBE Command 1-27
Quiz 1-28

Summary 1-29

Practice 1: Overview 1-30

Restricting and Sorting Data
Objectives 2-2

Lesson Agenda 2-3

Limiting Rows Using a Selection 2-4
Limiting the Rows That Are Selected 2-5
Using the WHERE Clause 2-6

Character Strings and Dates 2-7

Comparison Operators 2-8

Using Comparison Operators 2-9

Range Conditions Using the BETWEEN Operator 2-10
Membership Condition Using the 1N Operator 2-11
Pattern Matching Using the L.IKE Operator 2-12
Combining Wildcard Characters 2-13

Using the NULL Conditions 2-14

Defining Conditions Using the Logical Operators 2-15
Using the AND Operator 2-16

Using the OR Operator 2-17

Using the NOT Operator 2-18

Lesson Agenda 2-19

Rules of Precedence 2-20

Lesson Agenda 2-22

Using the ORDER BY Clause 2-23

Sorting 2-24

Lesson Agenda 2-26

Substitution Variables 2-27

Using the Single-Ampersand Substitution Variable 2-29
Character and Date Values with Substitution Variables 2-31
Specifying Column Names, Expressions, and Text 2-32
Using the Double-Ampersand Substitution Variable 2-33
Lesson Agenda 2-34

Using the DEFINE Command 2-35

Using the VERIFY Command 2-36

Quiz 2-37

Summary 2-38

Practice 2: Overview 2-39

Using Single-Row Functions to Customize Output
Objectives 3-2

Lesson Agenda 3-3

SQL Functions 3-4

Two Types of SQL Functions 3-5

Single-Row Functions 3-6

Lesson Agenda 3-8

Character Functions 3-9

Case-Conversion Functions 3-11

Using Case-Conversion Functions 3-12

Character-Manipulation Functions 3-13

Using the Character-Manipulation Functions 3-14
Lesson Agenda 3-15

Number Functions 3-16

Using the ROUND Function 3-17

Using the TRUNC Function 3-18

Using the MOD Function 3-19

Lesson Agenda 3-20

Working with Dates 3-21

RR Date Format 3-22

Using the SYSDATE Function 3-24

Arithmetic with Dates 3-25

Using Arithmetic Operators with Dates 3-26
Lesson Agenda 3-27

Date-Manipulation Functions 3-28

Using Date Functions 3-29

Using ROUND and TRUNC Functions with Dates 3-30
Quiz 3-31

Summary 3-32

Practice 3: Overview 3-33

Using Conversion Functions and Conditional Expressions
Objectives 4-2

Lesson Agenda 4-3

Conversion Functions 4-4

Implicit Data Type Conversion 4-5

Explicit Data Type Conversion 4-7

Lesson Agenda 4-10

Using the TO_CHAR Function with Dates 4-11

Elements of the Date Format Model 4-12

Using the TO CHAR Function with Dates 4-16

Using the TO CHAR Function with Numbers 4-17

Using the TO_NUMBER and TO DATE Functions 4-20

Using the TO_CHAR and TO_DATE Function with RR Date Format 4-22
Lesson Agenda 4-23

Nesting Functions 4-24

Lesson Agenda 4-26

General Functions 4-27

NVL Function 4-28

Using the NVL Function 4-29

Vi

Using the NVL2 Function 4-30
Using the NULLIF Function 4-31
Using the COALESCE Function 4-32
Lesson Agenda 4-35
Conditional Expressions 4-36
CASE Expression 4-37

Using the CASE Expression 4-38
DECODE Function 4-39

Using the DECODE Function 4-40
Quiz 4-42

Summary 4-43

Practice 4: Overview 4-44

Reporting Aggregated Data Using the Group Functions
Objectives 5-2

Lesson Agenda 5-3

What Are Group Functions? 5-4

Types of Group Functions 5-5

Group Functions: Syntax 5-6

Using the AvG and SuM Functions 5-7

Using the MIN and MAX Functions 5-8

Using the COUNT Function 5-9

Using the DISTINCT Keyword 5-10

Group Functions and Null Values 5-11

Lesson Agenda 5-12

Creating Groups of Data 5-13

Creating Groups of Data: GRoUP BY Clause Syntax 5-14
Using the GROUP BY Clause 5-15

Grouping by More than One Column 5-17

Using the GROUP BY Clause on Multiple Columns 5-18
lllegal Queries Using Group Functions 5-19

Restricting Group Results 5-21

Restricting Group Results with the HAVING Clause 5-22
Using the HAVING Clause 5-23

Lesson Agenda 5-25

Nesting Group Functions 5-26

Quiz 5-27

Summary 5-28

Practice 5: Overview 5-29

Vii

6 Displaying Data from Multiple Tables
Objectives 6-2
Lesson Agenda 6-3
Obtaining Data from Multiple Tables 6-4
Types of Joins 6-5
Joining Tables Using SQL:1999 Syntax 6-6
Qualifying Ambiguous Column Names 6-7
Lesson Agenda 6-8
Creating Natural Joins 6-9
Retrieving Records with Natural Joins 6-10
Creating Joins with the USING Clause 6-11
Joining Column Names 6-12
Retrieving Records with the USING Clause 6-13
Using Table Aliases with the UsING Clause 6-14
Creating Joins with the oN Clause 6-15
Retrieving Records with the oN Clause 6-16
Creating Three-Way Joins with the oN Clause 6-17
Applying Additional Conditions to a Join 6-18
Lesson Agenda 6-19
Joining a Table to Itself 6-20
Self-Joins Using the on Clause 6-21
Lesson Agenda 6-22
Nonequijoins 6-23
Retrieving Records with Nonequijoins 6-24
Lesson Agenda 6-25
Returning Records with No Direct Match Using OUTER Joins 6-26
INNER Versus OUTER Joins 6-27
LEFT OUTER JOIN 6-28
RIGHT OUTER JOIN 6-29
FULL OUTER JOIN 6-30
Lesson Agenda 6-31
Cartesian Products 6-32
Generating a Cartesian Product 6-33
Creating Cross Joins - 6-34
Quiz 6-35
Summary 6-36
Practice 6: Overview 6-37

viii

7 Using Subqueries to Solve Queries
Objectives 7-2
Lesson Agenda 7-3
Using a Subquery to Solve a Problem 7-4
Subquery Syntax 7-5
Using a Subquery 7-6
Guidelines for Using Subqueries 7-7
Types of Subqueries 7-8
Lesson Agenda 7-9
Single-Row Subqueries 7-10
Executing Single-Row Subqueries 7-11
Using Group Functions in a Subquery 7-12
The HAVING Clause with Subqueries 7-13
What Is Wrong with This Statement? 7-14
No Rows Returned by the Inner Query 7-15
Lesson Agenda 7-16
Multiple-Row Subqueries 7-17
Using the ANY Operator in Multiple-Row Subqueries 7-18
Using the ALL Operator in Multiple-Row Subqueries 7-19
Lesson Agenda 7-20
Null Values in a Subquery 7-21
Quiz 7-23
Summary 7-24
Practice 7: Overview 7-25

8 Using the Set Operators
Objectives 8-2
Lesson Agenda 8-3
Set Operators 8-4
Set Operator Guidelines 8-5
The Oracle Server and Set Operators 8-6
Lesson Agenda 8-7
Tables Used in This Lesson * 8-8
Lesson Agenda 8-12
UNION Operator 8-13
Using the UNION Operator 8-14
UNION ALL Operator 8-16
Using the UNION ALL Operator 8-17
Lesson Agenda 8-18
INTERSECT Operator 8-19

Using the INTERSECT Operator 8-20

Lesson Agenda 8-21

MINUS Operator 8-22

Using the MINUS Operator 8-23

Lesson Agenda 8-24

Matching the SELECT Statements 8-25
Matching the SELECT Statement: Example 8-26
Lesson Agenda 8-27

Using the ORDER BY Clause in Set Operations 8-28
Quiz 8-29

Summary 8-30

Practice 8: Overview 8-31

Manipulating Data

Objectives 9-2

Lesson Agenda 9-3

Data Manipulation Language 9-4

Adding a New Row to a Table 9-5

INSERT Statement Syntax 9-6

Inserting New Rows 9-7

Inserting Rows with Null Values 9-8

Inserting Special Values 9-9

Inserting Specific Date and Time Values 9-10
Creating a Script 9-11

Copying Rows from Another Table 9-12
Lesson Agenda 9-13

Changing Data in a Table 9-14

UPDATE Statement Syntax 9-15

Updating Rows in a Table 9-16

Updating Two Columns with a Subquery 9-17
Updating Rows Based on Another Table 9-18
Lesson Agenda 9-19

Removing a Row from a Table 9-20

DELETE Statement 9-21

Deleting Rows from a Table 9-22

Deleting Rows Based on Another Table 9-23
TRUNCATE Statement 9-24

Lesson Agenda 9-25

Database Transactions 9-26

Database Transactions: Start and End 9-27

10

Advantages of COMMIT and ROLLBACK Statements 9-28
Explicit Transaction Control Statements 9-29

Rolling Back Changes to a Marker 9-30

Implicit Transaction Processing 9-31

State of the Data Before COMMIT or ROLLBACK 9-33
State of the Data After comMIT 9-34

Committing Data 9-35

State of the Data After ROLLBACK 9-36

State of the Data After ROLLBACK: Example 9-37
Statement-Level Rollback 9-38

Lesson Agenda 9-39

Read Consistency 9-40

Implementing Read Consistency 9-41

Lesson Agenda 9-42

FOR UPDATE Clause in a SELECT Statement 9-43
FOR UPDATE Clause: Examples 9-44

Quiz 9-46

Summary 9-47

Practice 9: Overview 9-48

Using DDL Statements to Create and Manage Tables
Objectives 10-2

Lesson Agenda 10-3

Database Objects 10-4

Naming Rules 10-5

Lesson Agenda 10-6

CREATE TABLE Statement 10-7
Referencing Another User’'s Tables 10-8
DEFAULT Option 10-9

Creating Tables 10-10

Lesson Agenda 10-11

Data Types 10-12

Datetime Data Types 10-14

Lesson Agenda 10-15

Including Constraints 10-16

Constraint Guidelines 10-17

Defining Constraints 10-18

NOT NULL Constraint 10-20

UNIQUE Constraint 10-21

PRIMARY KEY Constraint 10-23

Xi

11

FOREIGN KEY Constraint 10-24
FOREIGN KEY Constraint: Keywords 10-26
CHECK Constraint 10-27

CREATE TABLE: Example 10-28
Violating Constraints 10-29

Lesson Agenda 10-31

Creating a Table Using a Subquery 10-32
Lesson Agenda 10-34

ALTER TABLE Statement 10-35
Read-Only Tables 10-36

Lesson Agenda 10-37

Dropping a Table 10-38

Quiz 10-39

Summary 10-40

Practice 10: Overview 10-41

Creating Other Schema Objects

Objectives 11-2

Lesson Agenda 11-3

Database Objects 11-4

What Is a View? 11-5

Advantages of Views 11-6

Simple Views and Complex Views 11-7
Creating a View 11-8

Retrieving Data from a View 11-11

Modifying a View 11-12

Creating a Complex View 11-13

Rules for Performing DML Operations on a View 11-14
Using the WITH CHECK OPTION Clause 11-17
Denying DML Operations 11-18

Removing a View 11-20

Practice 11: Overview of Part 1 11-21

Lesson Agenda 11-22

Sequences 11-23

CREATE SEQUENCE Statement: Syntax 11-25
Creating a Sequence 11-26

NEXTVAL and CURRVAL Pseudocolumns 11-27
Using a Sequence 11-29

Caching Sequence Values 11-30

Modifying a Sequence 11-31

Xii

Guidelines for Modifying a Sequence 11-32
Lesson Agenda 11-33

Indexes 11-34

How Are Indexes Created? 11-36
Creating an Index 11-37

Index Creation Guidelines 11-38
Removing an Index 11-39

Lesson Agenda 11-40

Synonyms 11-41

Creating a Synonym for an Object 11-42
Creating and Removing Synonyms 11-43
Quiz 11-44

Summary 11-45

Practice 11: Overview of Part 2 11-46

Appendix A: Practice Solutions

Appendix B: Table Descriptions

Appendix C: Oracle Join Syntax
Objectives C-2
Obtaining Data from Multiple Tables C-3
Cartesian Products C-4
Generating a Cartesian Product C-5
Types of Oracle-Proprietary Joins C-6
Joining Tables Using Oracle Syntax C-7
Qualifying Ambiguous Column Names C-8
Equijoins C-9
Retrieving Records with Equijoins C-10
Retrieving Records with Equijoins: Example C-11
Additional Search Conditions Using the AND Operator C-12
Joining More than Two Tables C-13
Nonequijoins C-14
Retrieving Records with Nonequijoins C-15
Returning Records with No Direct Match with Outer Joins C-16
Outer Joins: Syntax C-17
Using Outer Joins C-18
Outer Join: Another Example C-19
Joining a Table to Itself C-20
Self-Join: Example C-21

xiii

Summary C-22
Practice C: Overview C-23

Appendix D: Using SQL*Plus
Objectives D-2
SQL and SQL*Plus Interaction D-3
SQL Statements Versus SQL*Plus Commands D-4
Overview of SQL*Plus D-5
Logging In to SQL*Plus D-6
Displaying Table Structure D-8
SQL*Plus Editing Commands D-10
Using LIST, n, and APPEND D-12
Using the CHANGE Command D-13
SQL*Plus File Commands D-14
Using the SAVE, START, and EDIT Commands D-15
SERVEROUTPUT Command D-17
Using the SQL*Plus spooL, Command D-18
Using the AUTOTRACE Command D-19
Summary D-20

Appendix E: Using SQL Developer
Objectives E-2
What Is Oracle SQL Developer? E-3
Specifications of SQL Developer E-4
Installing SQL Developer E-5
SQL Developer 1.2 Interface E-6
Creating a Database Connection E-7
Browsing Database Objects E-10
Creating a Schema Object E-11
Creating a New Table: Example E-12
Using the SQL Worksheet E-13
Executing SQL Statements E-16
Saving SQL Scripts E-17
Executing Saved Script Files: Method 1 E-18
Executing Saved Script Files: Method 2 E-19
Executing SQL Statements E-20
Formatting the SQL Code E-21
Using Snippets E-22
Using Snippets: Example E-23
Using SQL*Plus E-24

Xiv

Debugging Procedures and Functions E-25
Database Reporting E-26

Creating a User-Defined Report E-27
Search Engines and External Tools E-28
Setting Preferences E-29

Specifications of SQL Developer 1.5.3 E-30
Installing SQL Developer 1.5.3 E-31

SQL Developer 1.5.3 Interface E-32
Summary E-34

Index
Additional Practices

Additional Practices: Solutions

XV

Preface

Profile
Before You Begin This Course

Before you begin this course, you should be able to use a graphical user interface (GUI).
The prerequisite is a familiarity with data processing concepts and techniques.

How This Course Is Organized

Oracle Database 11g: SOL Fundamentals I is an instructor-led course featuring lectures
and hands-on exercises. Online demonstrations and written practice sessions reinforce the
concepts and skills that are introduced.

Preface -3

Related Publications

Oracle Publications
Title
Oracle® Database Reference 11g Release 1 (11.1)
Oracle® Database SOL Language Reference 11g
Release 1 (11.1)
Oracle® Database Concepts 11g Release 1 (11.1)
Oracle® Database SOL Developer User's Guide
Release 1.2

Additional Publications
» System release bulletins
» Installation and user’s guides
* read.me files
» International Oracle User’s Group (IOUGQG) articles

* Oracle Magazine

Preface - 4

Part Number
B28320-01
B28286-01

B28318-01
E10406-01

Typographic Conventions

What follows are two lists of typographical conventions that are used specifically within text or

within code.
Typographic Conventions Within Text

Convention Object or Term

Commands,
functions,
column names,
table names,
PL/SQL objects,
schemas

Uppercase

Filenames,
syntax variables,
usernames,
passwords

Lowercase,
italic

Initial cap Trigger and

button names

Italic Books, names of
courses and
manuals, and
emphasized

words or phrases

Lesson module
titles referenced
within a course

Quotation marks

Example

Use the SELECT command to view
information stored in the LAST NAME
column of the EMPLOYEES table.

is the name of the role
to be created.

where: role

Assign a When-Validate-Item trigger to
the ORD block.

Choose Cancel.

For more information on the subject see
Oracle SOL Reference
Manual

Do not save changes to the database.

This subject is covered in Lesson 3,
“Working with Objects.”

Preface -5

Typographic Conventions (continued)

Typographic Conventions Within Code

Convention

Uppercase

Lowercase,
italic

Initial cap

Lowercase

Bold

Object or Term

Commands,
functions

Syntax variables

Forms triggers

Column names,
table names,
filenames,
PL/SQL objects

Text that must
be entered by a
user

Example

SELECT employee id
FROM employees;

CREATE ROLE role;

Form module: ORD

Trigger level: S ITEM.QUANTITY
item

Trigger name: When-Validate-Item

OG ACTIVATE LAYER
(OG_GET LAYER ('prod pie layer'))

SELECT last name
FROM employees;

CREATE USER scott
IDENTIFIED BY tiger;

Preface - 6

Introduction

Copyright © 2009, Oracle. All rights reserved.

Lesson Objectives

After completing this lesson, you should be able to do the
following:

« Understand the goals of the course
» List the features of Oracle Database 11g

* Discuss the theoretical and physical aspects of a relational
database

« Describe Oracle server’s implementation of RDBMS and
object relational database management system
(ORDBMS)

* ldentify the development environments that can be used
for this course
 Describe the database and schema used in this course

Copyright © 2009, Oracle. All rights reserved.

Objectives
In this lesson, you gain an understanding of the relational database management system (RDBMS)
and the object relational database management system (ORDBMS). You are also introduced to
Oracle SQL Developer and SQL*Plus as development environments used for executing SQL
statements, and for formatting and reporting purposes.

Oracle Database 11g: SQL Fundamentals | |-2

Lesson Agenda

« Course objectives, agenda, and appendixes used in the
course

* Overview of Oracle Database 11g and related products

» Overview of relational database management concepts
and terminologies

» Introduction to SQL and its development environments
e The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 1-3

Course Objectives

After completing this course, you should be able to:
* Identify the major components of Oracle Database 11g
» Retrieve row and column data from tables with the SELECT
statement
» Create reports of sorted and restricted data

« Employ SQL functions to generate and retrieve customized
data

* Run complex queries to retrieve data from multiple tables

* Run data manipulation language (DML) statements to
update data in Oracle Database 11g

* Run data definition language (DDL) statements to create
and manage schema objects

Copyright © 2009, Oracle. All rights reserved.

Course Objectives

This course offers you an introduction to Oracle Database 11g database technology. In this class, you
learn the basic concepts of relational databases and the powerful SQL programming language. This
course provides the essential SQL skills that enable you to write queries against single and multiple
tables, manipulate data in tables, create database objects, and query metadata.

Oracle Database 11g: SQL Fundamentals | |-4

Course Agenda

« Day 1:

— Introduction

— Retrieving Data Using the SQL SELECT Statement

— Restricting and Sorting Data

— Using Single-Row Functions to Customize Output

— Using Conversion Functions and Conditional Expressions
« Day 2:

— Reporting Aggregated Data Using the Group Functions

— Displaying Data from Multiple Tables

— Using Subqueries to Solve Queries

— Using the Set Operators

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 1-5

Course Agenda

« Day 3:
— Manipulating Data
— Using DDL Statements to Create and Manage Tables
— Creating Other Schema Objects

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 1-6

Appendixes Used in the Course

* Appendix A: Practice Solutions

* Appendix B: Table Descriptions

* Appendix C: Oracle Join Syntax

* Appendix D: Using SQL*Plus

* Appendix E: Using SQL Developer
« Additional Practices

« Additional Practices Solutions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 1-7

Lesson Agenda

» Course objectives, course agenda, and appendixes used
in this course

« Overview of Oracle Database 11g and related products

» Overview of relational database management concepts
and terminologies

» Introduction to SQL and its development environments
e The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| |-8

Oracle Database 11g: Focus Areas

ORACLE 11 g

DATABASE

Infrastructure Information Application
Grids Management Development

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: Focus Areas

Oracle Database 11g offers extensive features across the following focus areas:

* Infrastructure Grids: The Infrastructure Grid technology of Oracle enables pooling of low-cost
servers and storage to form systems that deliver the highest quality of service in terms of
manageability, high availability, and performance. Oracle Database 11g consolidates and
extends the benefits of grid computing. Apart from taking full advantage of grid computing,
Oracle Database 11g has unique change assurance features to manage changes in a controlled
and cost effective manner.

* Information Management: Oracle Database 11g extends the existing information management
capabilities in content management, information integration, and information life cycle
management areas. Oracle provides content management of advanced data types such as
Extensible Markup Language (XML), text, spatial, multimedia, medical imaging, and semantic
technologies.

» Application Development: Oracle Database 11g has capabilities to use and manage all the
major application development environments such as PL/SQL, Java/JDBC, .NET and Windows,
PHP, SQL Developer, and Application Express.

Oracle Database 11g: SQL Fundamentals| 1-9

Oracle Database 11g

ORACLE 11 g

DATABASE

Manageability
High availability
Performance
Security

Information integration

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g

Organizations need to support multiple terabytes of information for users who demand fast and
secure access to business applications round-the-clock. The database systems must be reliable and
must be able to recover quickly in the event of any kind of failure. Oracle Database 11g is designed
along the following feature areas to help organizations manage infrastructure grids easily and deliver
high-quality service:

* Manageability: By using some of the change assurance, management automation, and fault
diagnostics features, the database administrators (DBAs) can increase their productivity, reduce
costs, minimize errors, and maximize quality of service. Some of the useful features that
promote better management are Database Replay facility, the SQL Performance Analyzer, and
the Automatic SQL Tuning facility.

* High availability: By using the high availability features, you can reduce the risk of down time
and data loss. These features improves online operations and enable faster database upgrades.

Oracle Database 11g: SQL Fundamentals| 1-10

Oracle Database 11g

ORACLE 11 g

DATABASE

Manageability
High availability
Performance
Security

Information integration

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g (continued)

* Performance: By using capabilities such as SecureFiles, compression for online transaction
processing (OLTP), Real Application Clusters (RAC) optimizations, Result Caches and so on,
you can greatly improve the performance of your database. Oracle Database 11g enables
organizations to manage large, scalable transactional and data warehousing systems that deliver
fast data access using low-cost modular storage.

* Security: Oracle Database 11g helps organizations protect their information with unique secure
configurations, data encryption and masking, and sophisticated auditing capabilities. It delivers a
secure and scalable platform for reliable and fast access to all types of information by using the
industry-standard interfaces.

* Information integration: Oracle Database 11g has many features to better integrate data
throughout the enterprise. It also supports advanced information life cycle management
capabilities. This helps you manage the changing data in your database.

Oracle Database 11g: SQL Fundamentals | 1-11

Oracle Fusion Middleware

Portfolio of leading, standards-based, and customer-proven
software products that spans a range of tools and services from
J2EE and developer tools, through integration services,
business intelligence, collaboration, and content management

User Interaction
Portals, Contend, Seanch,
Deskiop, Mobde, VoIP

Business Imelligence

ETL, Q&A OLAP, Reports.
Merts, Real Time

= . ; . Integration & Process Managerilenl
_ Application Server
;ﬁ- i Grid Infrastructure

E Clusters, Matadata, Registry, Security
.-_.‘_\._:%"

Copyright © 2009, Oracle. All rights reserved.

Oracle Fusion Middleware

Development Tools
SOA Tools & Framarwork

Oracle Fusion Middleware is a comprehensive and well-integrated family of products that offers
complete support for development, deployment, and management of Service-Oriented Architecture
(SOA). SOA facilitates the development of modular business services that can be easily integrated
and reused, thereby reducing development and maintenance costs, and providing higher quality of
services. Oracle Fusion Middleware’s pluggable architecture enables you to leverage your
investments in any existing application, system, or technology. Its unbreakable core technology
minimizes the disruption caused by planned or unplanned outages.
Some of the products from the Oracle Fusion Middleware family include:

* Enterprise Application Server: Application Server

* Integration and Process Management: BPEL Process Manager, Oracle Business Process

Analysis Suite

* Development Tools: Oracle Application Development Framework, JDeveloper, SOA Suite

* Business Intelligence: Oracle Business Activity Monitoring, Oracle Data Integrator

* Systems Management: Enterprise Manager

¢ Identity Management: Oracle Identity Management

* Content Management: Oracle Content Database Suite

» User Interaction: Portal, WebCenter

Oracle Database 11g: SQL Fundamentals | |-12

Oracle Enterprise Manager Grid Control 10g

- Efficient Oracle Fusion Middleware management

« Simplifying application and infrastructure life cycle
management

* Improved database administration and application
management capabilities

ENTERPRISE MANAGER 10

Copyright © 2009, Oracle. All rights reserved.

Oracle Enterprise Manager Grid Control 10g

Spanning applications, middleware, and database management, Oracle Enterprise Manager Grid
Control 10g delivers integrated enterprise management for Oracle and non-Oracle systems.

Oracle Enterprise Manager Grid Control 10g features advanced Oracle Fusion Middleware
management capabilities for the services that business applications rely upon, including SOA,
Business Activity Monitoring, and Identity Management.

* Wide-ranging management functionality for your applications including service-level
management, application performance management, configuration management, and change
automation

* Built-in grid automation capabilities means that information technology responds proactively
to fluctuating demand and implements new services more quickly so that businesses can thrive.

* In-depth diagnostics and readily available remediation across a range of applications
including custom-built applications, Oracle E-Business Suite, PeopleSoft, Siebel, Oracle Fusion
Middleware, Oracle Database, and underlying infrastructure

« Extensive life cycle management capabilities extends grid computing by providing solutions
for the entire application and infrastructure life cycle, including test, stage, and production
through operations. It has simplified patch management with synchronized patching, additional
operating system support, and conflict detection features.

Oracle Database 11g: SQL Fundamentals| 1-13

Oracle Bl Publisher

« Provides a central architecture for authoring, managing,
and delivering information in secure and multiple formats

* Reduces complexity and time to develop, test, and deploy
all kinds of reports

— Financial Reports, Invoices, Sales or Purchase orders, XML,
and EDI/EFT(eText documents)

« Enables flexible customizations

— For example, a Microsoft Word document report can be
generated in multiple formats such as PDF, HTML, Excel,

RTF, and so on. " PDF
w| — ORACLE * HTML
Bl PUBLISHER
Microsoft Word
" Excel

Copyright © 2009, Oracle. All rights reserved.

Oracle Bl Publisher

Oracle Database 11g also includes Oracle BI Publisher—the enterprise reporting solution from
Oracle. Oracle BI Publisher (formerly known as XML Publisher) offers the most efficient and
scalable reporting solution available for complex, distributed environments.

Oracle BI Publisher reduces the high costs associated with the development, customization, and
maintenance of business documents, while increasing the efficiency of reports management. By
using a set of familiar desktop tools, users can create and maintain their own report formats based on
data queries created by the IT staff or developers.

Oracle BI Publisher report formats can be designed using Microsoft Word or Adobe Acrobat—tools
that most users are already familiar with. Oracle BI Publisher also enables you to bring in data from
multiple data sources into a single output document. You can deliver reports via printer, email, or
fax. You can publish your report to a portal. You can even allow users to collaboratively edit and
manage reports on the Web-based Distributed Authoring and Versioning (WebDav) Web servers.

Oracle Database 11g: SQL Fundamentals | |-14

Lesson Agenda

» Course objectives, course agenda, and appendixes used
in this course

* Overview of Oracle Database 11g and related products

« Overview of relational database management concepts
and terminologies

» Introduction to SQL and its development environments
e The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 1-15

Relational and Object Relational
Database Management Systems

* Relational model and object relational model
« User-defined data types and objects

* Fully compatible with relational database

* Supports multimedia and large objects

* High-quality database server features

ORACLE 1 1§

DATABASE

Copyright © 2009, Oracle. All rights reserved.

Relational and Object Relational Database Management Systems
The Oracle server supports both the relational and the object relational database models.

The Oracle server extends the data-modeling capabilities to support an object relational database
model that provides object-oriented programming, complex data types, complex business objects,
and full compatibility with the relational world.

It includes several features for improved performance and functionality of the OLTP applications,
such as better sharing of run-time data structures, larger buffer caches, and deferrable constraints.
Data warehouse applications benefit from enhancements such as parallel execution of insert, update,
and delete operations; partitioning; and parallel-aware query optimization. The Oracle model
supports client/server and Web-based applications that are distributed and multitiered.

For more information about the relational and object relational model, see the Oracle Database
Concepts 11g Release 1 (11.1) manual.

Oracle Database 11g: SQL Fundamentals | 1-16

Data Storage on Different Media

DEPARTMENT _ID | DEPARTMENT_MAME | MANLAGER_ID | LOCATION_ID
1 10 Administrstion 101 1700
2 20 Marketing GRADE_LEVEL |LOWEST_SAL HIGHEST _SaL
3 20 Marketing 14 1000 2999
4 30 Purchasing 2 3000 5933
5 30 Purchasing ac EO00 9999
B 30 Purchasing 40 10000 14999
7 30 Purchaszing SE 15000 24999
a 30 Purchasing EF 25000 40000
9 30 Purchasing K] T7o0
10 40 Human Resources 1 2400
1 50 Shipping | I 100 1500

|
I !)
) ’gf
7T 4
>
Electronic - .
Filing cabinet Database
spreadsheet

Copyright © 2009, Oracle. All rights reserved.

Data Storage on Different Media

Every organization has some information needs. A library keeps a list of members, books, due dates,
and fines. A company needs to save information about its employees, departments, and salaries.
These pieces of information are called data.

Organizations can store data in various media and in different formats, such as a hard copy document
in a filing cabinet, or data stored in electronic spreadsheets, or in databases.

A database is an organized collection of information.

To manage databases, you need a database management system (DBMS). A DBMS is a program that
stores, retrieves, and modifies data in databases on request. There are four main types of databases:
hierarchical, network, relational, and (most recently) object relational.

Oracle Database 11g: SQL Fundamentals | 1-17

Relational Database Concept

 Dr. E. F. Codd proposed the relational model for database
systems in 1970.

* ltis the basis for the relational database management
system (RDBMS).
« The relational model consists of the following:
— Collection of objects or relations
— Set of operators to act on the relations
— Data integrity for accuracy and consistency

Copyright © 2009, Oracle. All rights reserved.

Relational Database Concept

The principles of the relational model were first outlined by Dr. E. F. Codd in a June 1970 paper
titled “A Relational Model of Data for Large Shared Data Banks.” In this paper, Dr. Codd proposed
the relational model for database systems.

The common models used at that time were hierarchical and network, or even simple flat-file data
structures. Relational database management systems (RDBMS) soon became very popular, especially
for their ease of use and flexibility in structure. In addition, a number of innovative vendors, such as
Oracle, supplemented the RDBMS with a suite of powerful, application development and user-
interface products, thereby providing a total solution.

Components of the Relational Model
» Collections of objects or relations that store the data
* A set of operators that can act on the relations to produce other relations
* Data integrity for accuracy and consistency

For more information, see An Introduction to Database Systems, Eighth Edition (Addison-Wesley:
2004), written by Chris Date.

Oracle Database 11g: SQL Fundamentals| 1-18

Definition of a Relational Database
A relational database is a collection of relations or
two-dimensional tables.

Oracle
server

ain
JL

]
]
]

Table name: EMPLOYEES Table name: DEPARTMENTS

EMPLOYEE_ID |FIRST_NAME |LAST_NAME |Er-p1.£\.IL DEPARTMENT_ID |DEF‘ARTMENT_NAME |MANAGER_ID
100 Steven King SHING 10 Administration 200
101 Meena Hochhar MEOCHHAR 20 Marketing 201
102 Lex De Haan LDEHALM 50 Shipping 124

Copyright © 2009, Oracle. All rights reserved.

Definition of a Relational Database

A relational database uses relations or two-dimensional tables to store information.

For example, you might want to store information about all the employees in your company. In a
relational database, you create several tables to store different pieces of information about your
employees, such as an employee table, a department table, and a salary table.

Oracle Database 11g: SQL Fundamentals | 1-19

Data Models

08—

Model of Entity model of -
system N \
o client’s model >
in client’s
mind
Table model
of entity model Oracle
l _._server
I - -
1]
1]
Tables on disk
Copyright © 2009, Oracle. All rights reserved.
Data Models

Models are the cornerstone of design. Engineers build a model of a car to work out any details before
putting it into production. In the same manner, system designers develop models to explore ideas and
improve the understanding of database design.

Purpose of Models

Models help communicate the concepts that are in people’s minds. They can be used to do the
following:

* Communicate

» Categorize

* Describe

* Specify

* Investigate

* Evolve

* Analyze

* Imitate

The objective is to produce a model that fits a multitude of these uses, can be understood by an end
user, and contains sufficient detail for a developer to build a database system.

Oracle Database 11g: SQL Fundamentals | 1|-20

Entity Relationship Model

« Create an entity relationship diagram from business
specifications or narratives:

EMPLOYEE . DEPARTMENT

#* number as_ngEe_d_to_ __| # number
* name * name

) job title composed of| location

« Scenario:

— “. .. Assign one or more employees to a
department . . .”

— “... Some departments do not yet have assigned employees

Copyright © 2009, Oracle. All rights reserved.

Entity Relationship Model

In an effective system, data is divided into discrete categories or entities. An entity relationship (ER)
model is an illustration of the various entities in a business and the relationships among them. An ER
model is derived from business specifications or narratives and built during the analysis phase of the
system development life cycle. ER models separate the information required by a business from the
activities performed within the business. Although businesses can change their activities, the type of
information tends to remain constant. Therefore, the data structures also tend to be constant.

Oracle Database 11g: SQL Fundamentals | |- 21

Entity Relationship Model (continued)

Benefits of ER Modeling:
* Documents information for the organization in a clear, precise format
* Provides a clear picture of the scope of the information requirement
» Provides an easily understood pictorial map for database design
* Offers an effective framework for integrating multiple applications

Key Components

* Entity: An aspect of significance about which information must be known. Examples are
departments, employees, and orders.

* Attribute: Something that describes or qualifies an entity. For example, for the employee entity,
the attributes would be the employee number, name, job title, hire date, department number, and
so on. Each of the attributes is either required or optional. This state is called optionality.

* Relationship: A named association between entities showing optionality and degree. Examples
are employees and departments, and orders and items

Oracle Database 11g: SQL Fundamentals | | -22

Entity Relationship
Modeling Conventions

Entity: Attribute:
« Singular, unique name ° Singular name

* Lowercase
« Uppercase :

- Mandat ked with “*”
. Soft box andatory marked wi

* Optional marked with “0”
* Synonym in parentheses

EMPLOYEE] DEPARTMENT

#* number assigned to #* number
* name |/ "7 * name

o job title composed off 4 location

Unique Identifier (UID)
Primary marked with “#’
Secondary marked with “(#)”

Copyright © 2009, Oracle. All rights reserved.

ER Modeling Conventions
Entities

To represent an entity in a model, use the following conventions:
 Singular, unique entity name
* Entity name in uppercase
* Soft box

* Optional synonym names in uppercase within parentheses: ()
Attributes

To represent an attribute in a model, use the following conventions:
» Singular name in lowercase
» Asterisk (*) tag for mandatory attributes (that is, values that must be known)
* Letter “0” tag for optional attributes (that is, values that may be known)

Relationships
Symbol Description
Dashed line Optional element indicating “maybe”
Solid line Mandatory element indicating “must be”
Crow’s foot Degree element indicating “one or more”
Single line Degree element indicating “one and only one”

Oracle Database 11g: SQL Fundamentals | 1-23

ER Modeling Conventions (continued)
Relationships

Each direction of the relationship contains:
* A label: for example, taught by or assigned to
* An optionality: either must be or maybe
* A degree: cither one and only one or one or more

Note: The term cardinality is a synonym for the term degree.

Each source entity {may be | must be} in relation {one and only one | one or more} with the
destination entity.

Note: The convention is to read clockwise.
Unique Identifiers

A unique identifier (UID) is any combination of attributes or relationships, or both, that serves to
distinguish occurrences of an entity. Each entity occurrence must be uniquely identifiable.

» Tag each attribute that is part of the UID with a hash sign “#”.

» Tag secondary UIDs with a hash sign in parentheses (#).

Oracle Database 11g: SQL Fundamentals | |-24

Relating Multiple Tables

« Each row of data in a table is uniquely identified by a
primary key.
* You can logically relate data from multiple tables using

foreign keys.
Table name: DEPARTMENTS

DERPARTMENT _ID |DEPARTMENT_NAME |MANAGER_ID |LOCATION_ID
10 &dministration 200 1700
Table name: EMPLOYEES 20 Marketing 201 1800
EMPLCOYEE_ID |FIRST_NAME |LAST_NAME |DEPARTMENT_ID 30 Shipping 124 1300
100 Steven King a0 EOIT 103 1400
101 Meena Kochhar 0 il Sales 149 2500
102 Lex De Haan a0 90 Executive 100 1700
103 Alexander Hunald [=11] 110 Accounting 205 1700
104 Bruce Ernst E0 T 190 Cortracting (ruall 1700
4 107 Diana Lorentz 4 0 |
Primary key Foreign key Primary key

Copyright © 2009, Oracle. All rights reserved.

Relating Multiple Tables

Each table contains data that describes exactly one entity. For example, the EMPLOYEES table
contains information about employees. Categories of data are listed across the top of each table, and
individual cases are listed below. By using a table format, you can readily visualize, understand, and
use information.

Because data about different entities is stored in different tables, you may need to combine two or
more tables to answer a particular question. For example, you may want to know the location of the
department where an employee works. In this scenario, you need information from the EMPLOYEES
table (which contains data about employees) and the DEPARTMENTS table (which contains
information about departments). With an RDBMS, you can relate the data in one table to the data in
another by using the foreign keys. A foreign key is a column (or a set of columns) that refers to a
primary key in the same table or another table.

You can use the ability to relate data in one table to data in another to organize information in
separate, manageable units. Employee data can be kept logically distinct from the department data by
storing it in a separate table.

Oracle Database 11g: SQL Fundamentals | |-25

Relating Multiple Tables (continued)

Guidelines for Primary Keys and Foreign Keys
* You cannot use duplicate values in a primary key.
* Primary keys generally cannot be changed.
» Foreign keys are based on data values and are purely logical (not physical) pointers.
* A foreign key value must match an existing primary key value or unique key value, otherwise it
must be null.
+ A foreign key must reference either a primary key or a unique key column.

Oracle Database 11g: SQL Fundamentals | |-26

Relational Database Terminology
(3)

@ EMPLOYEE_ID |FIRST_MAME |LAST_MAKME | SALARY JCOMMISSION_PCT JDEPARTMENT_ID 4
100)Steven King 24000 il a0
101|Meens Haochhar 17000 (ruall) an
102)Lex De Haan 17000 {rll an
103)alexander Hunald 9000 il &0
1044Bruce Ernzt 000 (ruall) =1 @
107|Diana Lorentz 4200 {rll [a11]

124 Kevin hoLrFgos 5300 a0
141|Trenna Rajs 3500 @I a0
142)Curtis Davies 3100 il a0
143|Randall Matas 2600 {rull a0
144)Peter Yargas 2500 {rwll a0
143|Eleni Zlotkey 10500 0z g0
174Elen Abel 11000 03 g0
176)Jonathon Taylor SE00 0.2 1]
178|Kimberely Grant 000 015 ([l
200Jennifer Whialen 4400 (ruall) 10

@l 201 |Michzel Hart=tein 13000 (il 20
202|Pat Fay E000 (rulf) 20
2050Shelley Higygins: 12000 (ruall) 110
206{'Millizm Gietz G300 (il 110

Copyright © 2009, Oracle. All rights reserved.

Relational Database Terminology

A relational database can contain one or many tables. A table is the basic storage structure of an
RDBMS. A table holds all the data necessary about something in the real world, such as employees,
invoices, or customers.

The slide shows the contents of the EMPLOYEES fable or relation. The numbers indicate the
following:

1. A single row (or tuple) representing all the data required for a particular employee. Each row in
a table should be identified by a primary key, which permits no duplicate rows. The order of
rows is insignificant; specify the row order when the data is retrieved.

2. A column or attribute containing the employee number. The employee number identifies a
unique employee in the EMPLOYEES table. In this example, the employee number column is
designated as the primary key. A primary key must contain a value and the value must be
unique.

3. A column that is not a key value. A column represents one kind of data in a table; in this
example, the data is the salaries of all the employees. Column order is insignificant when storing
data; specify the column order when the data is retrieved.

Oracle Database 11g: SQL Fundamentals | |-27

Relational Database Terminology (continued)

4. A column containing the department number, which is also a foreign key. A foreign key is a
column that defines how tables relate to each other. A foreign key refers to a primary key or a
unique key in the same table or in another table. In the example, DEPARTMENT ID uniquely
identifies a department in the DEPARTMENTS table.

. A field can be found at the intersection of a row and a column. There can be only one value in it.
6. A field may have no value in it. This is called a null value. In the EMPLOYEES table, only those
employees who have the role of sales representative have a value in the COMMISSION PCT

(commission) field.

9]

Oracle Database 11g: SQL Fundamentals | |-28

Lesson Agenda

» Course objectives, course agenda, and appendixes used
in this course

* Overview of Oracle Database 11g and related products

» Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments
e The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | |-29

Using SQL to Query Your Database

Structured query language (SQL) is:

« The ANSI standard language for operating relational
databases

- Efficient, easy to learn, and use

* Functionally complete (With SQL, you can define, retrieve,
and manipulate data in the tables.)

SELECT department name
FROM departments; i

|DEP.=’-\RTMENT_NAME OraCIe
Adminiztration < server

Marketing
Shipping
IT

Sales
Executive
Accounting
Contracting

Copyright © 2009, Oracle. All rights reserved.

Using SQL to Query Your Database

In a relational database, you do not specify the access route to the tables, and you do not need to
know how the data is arranged physically.

To access the database, you execute a structured query language (SQL) statement, which is the
American National Standards Institute (ANSI) standard language for operating relational databases.
SQL is a set of statements with which all programs and users access data in an Oracle database.
Application programs and Oracle tools often allow users access to the database without using SQL
directly, but these applications, in turn, must use SQL when executing the user’s request.

SQL provides statements for a variety of tasks, including:
* Querying data
* Inserting, updating, and deleting rows in a table
* Creating, replacing, altering, and dropping objects
* Controlling access to the database and its objects
* QGuaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language and enables you to work with data
at a logical level.

Oracle Database 11g: SQL Fundamentals | 1-30

SQL Statements

SELECT
INSERT
UPDATE
DELETE
MERGE

Data manipulation language (DML)

CREATE
ALTER
DROP
RENAME
TRUNCATE
COMMENT

Data definition language (DDL)

GRANT

Data control language (DCL)
REVOKE

COMMIT
ROLLBACK
SAVEPOINT

Copyright © 2009, Oracle. All rights reserved.

SQL Statements

SQL statements supported by Oracle comply with industry standards. Oracle Corporation ensures
future compliance with evolving standards by actively involving key personnel in SQL standards
committees. The industry-accepted committees are ANSI and International Standards Organization
(ISO). Both ANSI and ISO have accepted SQL as the standard language for relational databases.

Transaction control

Statement Description

SELECT Retrieves data from the database, enters new rows, changes existing rows, and
INSERT removes unwanted rows from tables in the database, respectively. Collectively
UPDATE known as data manipulation language (DML)

DELETE

MERGE

CREATE Sets up, changes, and removes data structures from tables. Collectively known as
ALTER data definition language (DDL)

DROP

RENAME

TRUNCATE

COMMENT

GRANT Provides or removes access rights to both the Oracle database and the structures
REVOKE within it

COMMIT Manages the changes made by DML statements. Changes to the data can be
ROLLBACK grouped together into logical transactions

SAVEPOINT

Oracle Database 11g: SQL Fundamentals | |- 31

Development Environments for SQL

There are two development environments for this course:
* Primary tool is Oracle SQL Developer
« SQL*Plus command line interface may also be used

W Oracle SQL Developer : myconnection o< SQL Plus (2) HEE

B b PO B R el DRl et e QL#Plus: Release 11.1.8.4.8 — Beta on Wed Jun 13 13:11:46 2687 —
88 90 3§ Q-0 8- ‘ 'y Copyright <c) 1982, 2007, Oracle. ALl rights reserved.
[myconnection = aL>

PEGRO S8l ¢ (v
L

mmmmmmmmmmm

‘I
SQL Developer| - SQL *Plus

e I

sssssss

Copyright © 2009, Oracle. All rights reserved.

Development Environments for SQL
SQL Developer

This course has been developed using Oracle SQL Developer as the tool for running the SQL
statements discussed in the examples in the slide and the practices.
* SQL Developer version 1.2 is shipped with Oracle Database 11g, and is the default tool for this
class.
* In addition, SQL Developer version 1.5.3 is also available on the classroom machine, and may
be installed for use. At the time of publication for this course, version 1.5.3 was the latest release
of SQL Developer.

SQL*Plus
The SQL*Plus environment may also be used to run all SQL commands covered in this course.

Note
» See Appendix E for information on using SQL Developer, including simple instructions on
installing version 1.5.3.
* See Appendix D for information on using SQL*Plus.

Oracle Database 11g: SQL Fundamentals | |-32

Lesson Agenda

» Course objectives, course agenda, and appendixes used
in this course

* Overview of Oracle Database 11g and related products

» Overview of relational database management concepts
and terminologies

» Introduction to SQL and its development environments
 The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | |-33

The Human Resources (HR) Schema

DEPARTMENTS LOCATIONS
department_id location_id
department_name -—— street_address
manager_id postal_code
location_id city
state_province
country_id
JOB_HISTORY (_L%
employee_id
start_date - EMPLOYE.ES
end_date en_nployee_ld
jol; id first_name
department_id Iast_name COUNTRIES
email country_id
)\ 4 phone_number country_name
1 hire_date — = region_id
I job_id va
salary
commission_pct
JOBS manager_id
job_id department_id
job_title ——

REGIONS
region_id
region_name

min_salary

max_salary

Copyright © 2009, Oracle. All rights reserved.

The Human Resources (HR) Schema Description

The Human Resources (HR) schema is a part of the Oracle Sample Schemas that can be installed in
an Oracle database. The practice sessions in this course use data from the HR schema.

Table Descriptions

« REGIONS contains rows that represent a region such as America, Asia, and so on.

« COUNTRIES contains rows for countries, each of which is associated with a region.

« LOCATIONS contains the specific address of a specific office, warechouse, or production site of
a company in a particular country.

« DEPARTMENTS shows details about the departments in which the employees work. Each
department may have a relationship representing the department manager in the EMPLOYEES
table.

« EMPLOYEES contains details about each employee working for a department. Some employees
may not be assigned to any department.

« JOBS contains the job types that can be held by each employee.

« JOB_ HISTORY contains the job history of the employees. If an employee changes departments
within a job or changes jobs within a department, then a new row is inserted into this table with
the earlier job information of the employee.

Oracle Database 11g: SQL Fundamentals | |- 34

Tables Used in the Course
EMPLOYEES
EMPLOYEE_ID |F|RST_NAME |LAST_NAME |SALARY |COMM|SS|ON_PCT |DEPARTMENT_|D EhdaIL PHOME_WUMEER |HIRE_DATE
100 Steven King 24000 {rlly a0 KNG 515123 4567 17-JUr-57
10 Meens Kochhar 17000 {rlly 90 MKOCHHAR 515123 4568 21-SEP-82
102 Lex D& Haan 17000 {rilly 90 LDEHAAR 515123 4569 13-JAR-93
103 Alexander Hunold 9000 {rlly B0 AHUMOLD 590423 4567 03-JaR-90
104 Bruce Ernst 000 {rilly B0 BERMET 500 423 4563 27-ha 31
107 Diana Lorentz 4200 {rlly 60 DLOREMTZ 590,423 5567 07-FEE-92
124 Kevin fourgos a800 {rilly a0 KMOURGOS Ba0.123 5234 16-MON-99
141 Trenna Rajs 3500 {rlly S0 TRALS B50.121 8009 A7-0CT-95
142 Ot Do A00 Lol S50 CDAMNIES 650,121 .2994 29-JAR-27
DEPARTMENT D |DEPARTMENT NAME |MANAGER D |LOCATION ID cokoraTos les0 1212874 l15marss
10 Administration 200 1700
e n— 01 1ann| |GRADE_LEVEL [LOWEST_SaL HIGHEST_SaL
50 Shipping 124 15o0| |* 1000 2333
50T 103 1400 [P 2000 2939
50 Sales 140 2zm0| |© S gei
90 Executive 100 1700 & ey U8
110 Accourting 205 170 |E 1000 24839
190 Cortracting [rnl) 1700 : e Sy
DEPARTMENTS JOB_GRADES

Copyright © 2009, Oracle. All rights reserved.

Tables Used in the Course

The following main tables are used in this course:
« EMPLOYEES table: Gives details of all the employees
« DEPARTMENTS table: Gives details of all the departments
« JOB_GRADES table: Gives details of salaries for various grades

Apart from these tables, you will also use the other tables listed in the previous slide such as the
LOCATIONS and the JOB_HISTORY table.

Note: The structure and data for all the tables are provided in Appendix B.

Oracle Database 11g: SQL Fundamentals | |-35

Lesson Agenda

» Course objectives, course agenda, and appendixes used
in this course

* Overview of Oracle Database 11g and related products

» Overview of relational database management concepts
and terminologies

» Introduction to SQL and its development environments
e The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | |- 36

Oracle Database 11g Documentation

* Oracle Database New Features Guide 11g,
Release 1 (11.1)

* Oracle Database Reference 11g, Release 1 (11.1)

* Oracle Database SQL Language Reference 11g,
Release 1 (11.1)

* Oracle Database Concepts 11g, Release 1 (11.1)

* Oracle Database SQL Developer User's Guide,
Release 1.2

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g Documentation

Navigate to http://www.oracle.com/pls/db111/homepage to access the Oracle Database 11g
documentation library.

Oracle Database 11g: SQL Fundamentals | |-37

Additional Resources

For additional information about the Oracle Database 11g, refer
to the following:

* Oracle Database 11g: New Features eStudies

* Oracle by Example series (OBE): Oracle Database 11g
— http://www.oracle.com/technology/obe/11gr1_db/index.htm

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | |-38

Summary

In this lesson, you should have learned that:

* Oracle Database 11g extends:
— The benefits of infrastructure grids
— The existing information management capabilities

— The capabilities to use the major application development
environments such as PL/SQL, Java/JDBC, .NET, XML, and
so on

« The database is based on ORDBMS

* Relational databases are composed of relations, managed
by relational operations, and governed by data integrity
constraints

« With the Oracle server, you can store and manage
information by using SQL

Copyright © 2009, Oracle. All rights reserved.

Summary

Relational database management systems are composed of objects or relations. They are managed by
operations and governed by data integrity constraints.

Oracle Corporation produces products and services to meet your RDBMS needs. The main products
are the following:
* Oracle Database 11g with which you store and manage information by using SQL
* Oracle Fusion Middleware with which you develop, deploy, and manage modular business
services that can be integrated and reused
* Oracle Enterprise Manager Grid Control 10g, which you use to manage and automate
administrative tasks across sets of systems in a grid environment

SQL

The Oracle server supports ANSI-standard SQL and contains extensions. SQL is the language that is
used to communicate with the server to access, manipulate, and control data.

Oracle Database 11g: SQL Fundamentals | 1-39

Practice I: Overview

This practice covers the following topics:
* Running the Oracle SQL Developer demo

« Starting Oracle SQL Developer, creating a new database
connection, and browsing the HR tables

Copyright © 2009, Oracle. All rights reserved.

Practice I: Overview

In this practice, you perform the following:
* Run through the Oracle SQL Developer demo.
» Use Oracle SQL Developer to examine data objects in the ORA account assigned to you. The
ORA accounts contain the HR schema tables.

Note the following location for the lab files:
D:\labs\SQL1\labs
If you are asked to save any lab files, save them in this location.

In any practice, there maybe exercises that are prefaced with the phrases “If you have time” or “If
you want an extra challenge.” Work on these exercises only if you have completed all other exercises
within the allocated time and would like a further challenge to your skills.

Perform the practices slowly and precisely. You can experiment with saving and running command
files. If you have any questions at any time, ask your instructor.

Note: All written practices use Oracle SQL Developer as the development environment. Although it
1s recommended that you use Oracle SQL Developer, you can also use SQL*Plus that is available in
this course.

Oracle Database 11g: SQL Fundamentals | 1-40

Practice |

This is the first of many practices in this course. The solutions (if you require them) can be found in
Appendix A. Practices are intended to cover most of the topics that are presented in the
corresponding lesson.

Run Through the Oracle SQL Developer Demo: Creating a Database Connection

1. Access the demo “Creating a database connection” at:
http://st-curriculum.oracle.com/tutorial/SQLDeveloper/html/module2/mod02 cp newdbconn.htm

Starting Oracle SQL Developer
2. Start Oracle SQL Developer using the sqldeveloper desktop icon.

Note: When you start SQL Developer for the first time, you need to provide the path to the
java.exe file. This is already done for you as a part of the classroom setup. In any case, if
you are prompted, enter the following path:
D:\app\Administrator\product\11l.1.0\client 1\jdevstudio\jdk\bin

Creating a New Oracle SQL Developer Database Connection

3. To create a new database connection, in the Connections Navigator, right-click Connections.
Select New Connection from the menu. The New/Select Database Connection dialog box
appears.

4. Create a database connection using the following information:

a.

b.

™o e o

Connection Name: myconnection.

Username: oraxx where xx is the number of your PC (Ask your instructor to assign you
one ora account out of the oral-ora20 range of accounts.).

Password: oraxx

Hostname: Enter the host name of the machine where your database server is running.
Port: 1521

SID: ORCL

Ensure that you select the Save Password check box.

Oracle Database 11g: SQL Fundamentals | |- 41

Practice | (continued)

Testing and Connecting Using the Oracle SQL Developer Database Connection
5. Test the new connection.
6. If the status is Success, connect to the database using this new connection.

Browsing the Tables in the Connections Navigator
7. In the Connections Navigator, view the objects available to you in the Tables node. Verify that
the following tables are present:

COUNTRIES

DEPARTMENTS

EMPLOYEES

JOB_GRADES

JOB_HISTORY

JOBS

LOCATIONS

REGIONS
8. Browse the structure of the EMPLOYEES table.
9. View the data of the DEPARTMENTS table.

Opening a SQL Worksheet
10.0pen a new SQL Worksheet. Examine the shortcut icons available for the SQL Worksheet.

Oracle Database 11g: SQL Fundamentals | |-42

Retrieving Data Using
the SQL sELECT Statement

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
« List the capabilities of SQL SELECT statements

« Execute a basic SELECT statement

Copyright © 2009, Oracle. All rights reserved.

Objectives
To extract data from the database, you need to use the SQL SELECT statement. However, you may

need to restrict the columns that are displayed. This lesson describes all the SQL statements that are
needed to perform these actions. Further, you may want to create SELECT statements that can be

used more than once.

Oracle Database 11g: SQL Fundamentals | 1 -2

Lesson Agenda

« Basic SELECT statement

* Arithmetic expressions and NULL values in the SELECT
statement

e Column aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 1 -3

Capabilities of SQL SELECT Statements
Projection Selection
Table 1 Table 1
Join
Table 1 Table 2

Copyright © 2009, Oracle. All rights reserved.

Capabilities of SQL SELECT Statements

A SELECT statement retrieves information from the database. With a SELECT statement, you can
use the following capabilities:
* Projection: Select the columns in a table that are returned by a query. Select as few or as many
of the columns as required.
» Selection: Select the rows in a table that are returned by a query. Various criteria can be used to
restrict the rows that are retrieved.
 Joining: Bring together data that is stored in different tables by specifying the link between
them. SQL joins are covered in more detail in the lesson titled “Displaying Data from Multiple
Tables.”

Oracle Database 11g: SQL Fundamentals| 1 -4

Basic SELECT Statement

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

* SELECT identifies the columns to be displayed.
* FROM identifies the table containing those columns.

Copyright © 2009, Oracle. All rights reserved.

Basic SELECT Statement

In its simplest form, a SELECT statement must include the following:
* A SELECT clause, which specifies the columns to be displayed
* A FROM clause, which identifies the table containing the columns that are listed in the SELECT
clause

In the syntax:

SELECT is a list of one or more columns
* selects all columns
DISTINCT suppresses duplicates
column|expression selects the named column or the expression
alias gives the selected columns different headings
FROM table specifies the table containing the columns

Note: Throughout this course, the words keyword, clause, and statement are used as follows:
* A keyword refers to an individual SQL element.
For example, SELECT and FROM are keywords.
* A clause is a part of a SQL statement.
For example, SELECT employee id, last name, and so on is a clause.

* A statement is a combination of two or more clauses.
For example, SELECT * FROM employees is a SQL statement.

Oracle Database 11g: SQL Fundamentals| 1-5

Selecting All Columns

SELECT [*]
FROM departments;

B oerartvent D [oEParTMENT Mame (8 manacer D [LocaTion D
1 10 Administration 200 1700
2 20 Marketing 201 1800
3 50 Shipping 124 1500
4 BOIT 103 1400
5 80 Sales 149 2500
B 90 Executive 100 1700
7 110 Accounting 205 1700
g 190 Cortracting (il 1700

Copyright © 2009, Oracle. All rights reserved.

Selecting All Columns

You can display all columns of data in a table by following the SELECT keyword with an asterisk
(*). In the example in the slide, the department table contains four columns: DEPARTMENT ID,
DEPARTMENT NAME, MANAGER ID, and LOCATION ID. The table contains eight rows, one for
each department.

You can also display all columns in the table by listing all the columns after the SELECT keyword.
For example, the following SQL statement (like the example in the slide) displays all columns and all
rows of the DEPARTMENTS table:

SELECT department id, department name, manager id, location_ id

FROM departments;

Note: In SQL Developer, you can enter your SQL statement in a SQL Worksheet and click the
“Execute Statement” icon or press [F9] to execute the statement. The output displayed in the Results
tabbed page appears as shown in the slide.

Oracle Database 11g: SQL Fundamentals| 1 -6

Selecting Specific Columns

SELECT |department id, location id
FROM departments;

g oerartMenT 1D | LOCATION D
1 10 1700
2 20 1500
3 =0 1500
4 g0 1400
5 &0 2500
& a0 1700
7 110 1700
8 190 1700

Copyright © 2009, Oracle. All rights reserved.

Selecting Specific Columns

You can use the SELECT statement to display specific columns of the table by specifying the column

names, separated by commas. The example in the slide displays all the department numbers and
location numbers from the DEPARTMENTS table.

In the SELECT clause, specify the columns that you want in the order in which you want them to
appear in the output. For example, to display location before department number (from left to right),
you use the following statement:

SELECT location id, department id
FROM departments;

LOCATION_|D DEPARTWMEMT _|D
1 1700 10
2 1800 20
3 1500 50
4 1400 B0

Oracle Database 11g: SQL Fundamentals| 1-7

Writing SQL Statements

« SQL statements are not case-sensitive.

« SQL statements can be entered on one or more lines.
« Keywords cannot be abbreviated or split across lines.
« Clauses are usually placed on separate lines.

* Indents are used to enhance readability.

* In SQL Developer, SQL statements can optionally be
terminated by a semicolon (;). Semicolons are required
when you execute multiple SQL statements.

* In SQL*Plus, you are required to end each SQL statement
with a semicolon (;).

Copyright © 2009, Oracle. All rights reserved.

Writing SQL Statements

By using the following simple rules and guidelines, you can construct valid statements that are both
easy to read and edit:

» SQL statements are not case-sensitive (unless indicated).

« SQL statements can be entered on one or many lines.

» Keywords cannot be split across lines or abbreviated.

* Clauses are usually placed on separate lines for readability and ease of editing.

* Indents should be used to make code more readable.

» Keywords typically are entered in uppercase; all other words, such as table names and columns

names are entered in lowercase.

Executing SQL Statements

In SQL Developer, click the Run Script icon or press [F5] to run the command or commands in the
SQL Worksheet. You can also click the Execute Statement icon or press [F9] to run a SQL statement
in the SQL Worksheet. The Execute Statement icon executes the statement at the mouse pointer in
the Enter SQL Statement box while the Run Script icon executes all the statements in the Enter SQL
Statement box. The Execute Statement icon displays the output of the query on the Results tabbed
page while the Run Script icon emulates the SQL*Plus display and shows the output on the Script
Output tabbed page.
In SQL*Plus, terminate the SQL statement with a semicolon, and then press [Enter] to run the
command.

Oracle Database 11g: SQL Fundamentals| 1 -8

Column Heading Defaults

« SQL Developer:
— Default heading alignment: Left-aligned
— Default heading display: Uppercase
« SQL*Plus:
— Character and Date column headings are left-aligned.
— Number column headings are right-aligned.
— Default heading display: Uppercase

Copyright © 2009, Oracle. All rights reserved.

Column Heading Defaults

In SQL Developer, column headings are displayed in uppercase and are left-aligned.
SELECT last name, hire date, salary
FROM employees;

LAST_MAME |HIRE_DATE SALARY
1 King 17-JUN-57 24000
2 Kachhar 21-SEP-89 17000
3 De Haan 13-JAN-93 17000
4 Hunold 03-J4M-90 a000
5 Ernst 21 MY -9 000
& Lorentz 07-FEB-99 4200
7 Mourgos 16-MOY -39 Sa00
5 Rajs 17-0CT-895 3500

You can override the column heading display with an alias. Column aliases are covered later in this
lesson.

Oracle Database 11g: SQL Fundamentals| 1-9

Lesson Agenda

e Basic SELECT statement

* Arithmetic expressions and NULL values in the SELECT
statement

e Column Aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 1-10

Arithmetic Expressions

Create expressions with number and date data by using
arithmetic operators.

Operator Description

+ Add

- Subtract
* Multiply
/ Divide

Copyright © 2009, Oracle. All rights reserved.

Arithmetic Expressions

You may need to modify the way in which data is displayed, or you may want to perform
calculations, or look at what-if scenarios. All these are possible using arithmetic expressions. An
arithmetic expression can contain column names, constant numeric values, and the arithmetic
operators.

Arithmetic Operators

The slide lists the arithmetic operators that are available in SQL. You can use arithmetic operators in
any clause of a SQL statement (except the FROM clause).

Note: With the DATE and TIMESTAMP data types, you can use the addition and subtraction
operators only.

Oracle Database 11g: SQL Fundamentals| 1 -11

Using Arithmetic Operators

SELECT last name, salary,| salary + 300
FROM employees;

LAST_MAME | SALARY | SALARY+300
1 King 24000 24300
2 Kachhar 17000 17300
3 De Haan 17000 17300
4 Hunold 5000 5300
5 Ernst BO00 B300
& Lorentz 4200 4500
7 Mourgos S800 G100
& Rajs 3500 3800
3 Davies 3100 3400
10 Matos 2600 2900

Copyright © 2009, Oracle. All rights reserved.

Using Arithmetic Operators

The example in the slide uses the addition operator to calculate a salary increase of $300 for all
employees. The slide also displays a SALARY+3 00 column in the output.

Note that the resultant calculated column, SALARY+3 00, is not a new column in the EMPLOYEES

table; it is for display only. By default, the name of a new column comes from the calculation that
generated it—in this case, salary+300.

Note: The Oracle server ignores blank spaces before and after the arithmetic operator.

Operator Precedence

If an arithmetic expression contains more than one operator, multiplication and division are evaluated
first. If operators in an expression are of the same priority, then evaluation is done from left to right.

You can use parentheses to force the expression that is enclosed by the parentheses to be evaluated
first.

Rules of Precedence:
» Multiplication and division occur before addition and subtraction.
* Operators of the same priority are evaluated from left to right.
» Parentheses are used to override the default precedence or to clarify the statement.

Oracle Database 11g: SQL Fundamentals | 1 -12

Operator Precedence

SELECT last name,
FROM employees;

salary,

12*salary+100

LasT_mave ([§ salery |§ 12wsalarvaton |

1 King
2 Kochhar
3 De Haan

24000
17000
17000

255100
204100
204100

SELECT last name,
FROM employees;

salary,

12* (salary+100)

LAST MAME | SAL.&RY| 1 2(SALARY+100]

1 King
2 Wachhar
3 De Haan

24000
17000
17000

2858200
203200
205200

Copyright © 2009, Oracle. All rights reserved.

Operator Precedence (continued)

The first example in the slide displays the last name, salary, and annual compensation of employees.
It calculates the annual compensation by multiplying the monthly salary with 12, plus a one-time
bonus of $100. Note that multiplication is performed before addition.

Note: Use parentheses to reinforce the standard order of precedence and to improve clarity. For
example, the expression in the slide can be written as (12*salary) +100 with no change in the

result.

Using Parentheses

You can override the rules of precedence by using parentheses to specify the desired order in which
the operators are to be executed.

The second example in the slide displays the last name, salary, and annual compensation of
employees. It calculates the annual compensation as follows: adding a monthly bonus of $100 to the
monthly salary, and then multiplying that subtotal with 12. Because of the parentheses, addition takes
priority over multiplication.

Oracle Database 11g: SQL Fundamentals| 1-13

Defining a Null Value

* Null is a value that is unavailable, unassigned, unknown,
or inapplicable.

* Null is not the same as zero or a blank space.

SELECT last name, job id, salary, |commission pct
FROM employees;

LasT_mane @ soeip @ saiary 8 commssion_per |

1 King AD_PRES 24000 (i)

2 Wochhar AD_\P 17000 (i)

12 Tlotkey S MAN 10500 0z
13 Abel S&_REP 11000 03
14 Tavlar S&_REP 8600 0z
19 Higgins AC_WGR 12000 (il
20 Gietz AC_ACCOUNT 8300 [l

Copyright © 2009, Oracle. All rights reserved.

Defining a Null Value
If a row lacks a data value for a particular column, that value is said to be nul/ or to contain a null.

Null is a value that is unavailable, unassigned, unknown, or inapplicable. Null is not the same as zero
or a blank space. Zero is a number and blank space is a character.

Columns of any data type can contain nulls. However, some constraints (NOT NULL and PRIMARY
KEY) prevent nulls from being used in the column.

In the COMMISSION PCT column in the EMPLOYEES table, notice that only a sales manager or
sales representative can earn a commission. Other employees are not entitled to earn commissions. A
null represents that fact.

Note: By default, SQL Developer uses the literal, (null), to identify null values. However, you can
set it to something more relevant to you. To do so, select Preferences from the Tools menu. In the
Preferences dialog box, expand the Database node. Click Advanced Parameters and on the right
pane, for the “Display Null value As,” enter the appropriate value.

Oracle Database 11g: SQL Fundamentals| 1 -14

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value evaluate to null.

SELECT last name,| l12*salary*commission pct
FROM employees;

LAST_RAME | 125 AL ARNY *COMMISZION_PCT |

1 King (il
2 Wochhar [l
12 Zlotkey 25200
13 Abel 39600
14 Taylor 20640
19 Higgins (ruily
20 Gietz {rlly

Copyright © 2009, Oracle. All rights reserved.

Null Values in Arithmetic Expressions

If any column value in an arithmetic expression is null, the result is null. For example, if you attempt
to perform division by zero, you get an error. However, if you divide a number by null, the result is a

null or unknown.

In the example in the slide, employee King does not get any commission. Because the
COMMISSION PCT column in the arithmetic expression is null, the result is null.

For more information, see the section on “Basic Elements of Oracle SQL” in Oracle Database SOQL
Language Reference 11g, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals| 1-15

Lesson Agenda

« Basic SELECT statement

* Arithmetic expressions and NULL values in the SELECT
statement

« Column aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 1-16

Defining a Column Alias

A column alias:
 Renames a column heading
* |s useful with calculations

* Immediately follows the column name (There can also be
the optional As keyword between the column name and

alias.)

« Requires double quotation marks if it contains spaces or
special characters, or if it is case-sensitive

Copyright © 2009, Oracle. All rights reserved.

Defining a Column Alias
When displaying the result of a query, SQL Developer normally uses the name of the selected
column as the column heading. This heading may not be descriptive and, therefore, may be difficult
to understand. You can change a column heading by using a column alias.
Specify the alias after the column in the SELECT list using blank space as a separator. By default,
alias headings appear in uppercase. If the alias contains spaces or special characters (such as # or $),
or if it is case-sensitive, enclose the alias in double quotation marks (*).

Oracle Database 11g: SQL Fundamentals| 1 -17

Using Column Aliases

SELECT last name AS , commission pct
FROM employees;

name | comm | |

1 King [ruil)
2 Kochhar Lrul
3 De Haan {rully

SELECT last name["Name"| , salary*12 ["Annual Salary"]
FROM employees;

il Mame Annual Salar
1 King 285000
2 Kochhar 204000
3 De Haan 204000

Copyright © 2009, Oracle. All rights reserved.

Using Column Aliases

The first example displays the names and the commission percentages of all the employees. Note that
the optional AS keyword has been used before the column alias name. The result of the query is the
same whether the AS keyword is used or not. Also, note that the SQL statement has the column
aliases, name and comm, in lowercase, whereas the result of the query displays the column headings
in uppercase. As mentioned in the previous slide, column headings appear in uppercase by default.

The second example displays the last names and annual salaries of all the employees. Because
Annual Salary contains a space, it has been enclosed in double quotation marks. Note that the

column heading in the output is exactly the same as the column alias.

Oracle Database 11g: SQL Fundamentals| 1-18

Lesson Agenda

e Basic SELECT Statement

* Arithmetic Expressions and NULL values in SELECT
statement

e Column Aliases

« Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 1-19

Concatenation Operator

A concatenation operator:
* Links columns or character strings to other columns
* Is represented by two vertical bars (||)
« Creates a resultant column that is a character expression

SELECT 1last name||job id AS "Employees"
FROM employees;

Employess
1 AbelSA_REP
2 Davies=T_CLERK
3 De HaanaAD_WVP
4 ErnztiT_PROG
5 FayMK_REP

Copyright © 2009, Oracle. All rights reserved.

Concatenation Operator

You can link columns to other columns, arithmetic expressions, or constant values to create a
character expression by using the concatenation operator (||). Columns on either side of the operator
are combined to make a single output column.

In the example, LAST NAME and JOB_ID are concatenated, and given the alias Employees. Note
that the last name of the employee and the job code are combined to make a single output column.

The AS keyword before the alias name makes the SELECT clause easier to read.

Null Values with the Concatenation Operator

If you concatenate a null value with a character string, the result is a character string. LAST NAME
| | NULL results in LAST NAME.

Note: You can also concatenate date expressions with other expressions or columns.

Oracle Database 11g: SQL Fundamentals | 1 - 20

Literal Character Strings

 Aliteral is a character, a number, or a date that is included
in the SELECT statement.

 Date and character literal values must be enclosed within
single quotation marks.

» Each character string is output once for each row returned.

Copyright © 2009, Oracle. All rights reserved.

Literal Character Strings

A literal is a character, a number, or a date that is included in the SELECT list. It is not a column

name or a column alias. It is printed for each row returned. Literal strings of free-format text can be
included in the query result and are treated the same as a column in the SELECT list.

Date and character literals must be enclosed within single quotation marks (' '); number literals
need not be enclosed in a similar manner.

Oracle Database 11g: SQL Fundamentals | 1 - 21

Using Literal Character Strings

SELECT last name |||' is a '|||job id
AS "Employee Details"
FROM employees;

Employes Details
1 Abel iz a SA_REP
2 Davies iz a ST_CLERK
3 DeHaan iz a AD_WP
4 Ernzt iz alT_PROG
5 Fay iz a MK _REP

18 Vargas iz a ST_CLERK
19 Whalen iz a AD_ASET
20 Zlotkey iz a So4_Moan

Copyright © 2009, Oracle. All rights reserved.

Using Literal Character Strings

The example in the slide displays the last names and job codes of all employees. The column has the
heading Employee Details. Note the spaces between the single quotation marks in the SELECT

statement. The spaces improve the readability of the output.
In the following example, the last name and salary for each employee are concatenated with a literal,
to give the returned rows more meaning:

SELECT last name ||': 1 Month salary = '||salary Monthly
FROM employees;

MGMTHLY
H_lng_“l Iﬂu:-nth salary =_24IIIIIIIII
Kochhar: 1 Month salary = 17000
De Haan: 1 Month zalary = 17000
Hunold: 1 Month salary = 2000
Ernzt: 1 Month salary = G000
Lorentz: 1 Month salary = 4200
Mourgos: 1 Month salary = 5500

Rajz 1 Month salary = 3500

Mmoo~ @ e L k=

Oracle Database 11g: SQL Fundamentals | 1 - 22

Alternative Quote (q) Operator

« Specify your own quotation mark delimiter.
» Select any delimiter.
* Increase readability and usability.

SELECT department name ||| q'[Department's Manager Id:]'
| | manager id
AS "Department and Manager"
FROM departments;

Department and Manager
1 Administration Department's Manager Id: 200
2 Marketing Department's Manager 1d: 201
3 Shipping Department's Manager Id:124
4 [T Department's Manager ld:103
5 Sales Department's Manager 149
6B Executive Department's Manager Id: 100

7 Accounting Department's Manager |d: 205

5§ Cortracting Department's Manager Id:

Copyright © 2009, Oracle. All rights reserved.

Alternative Quote (q) Operator

Many SQL statements use character literals in expressions or conditions. If the literal itself contains a
single quotation mark, you can use the quote (q) operator and select your own quotation mark
delimiter.

You can choose any convenient delimiter, single-byte or multibyte, or any of the following character
pairs: [], { }, (), or <>.

In the example shown, the string contains a single quotation mark, which is normally interpreted as a
delimiter of a character string. By using the g operator, however, brackets [] are used as the quotation

mark delimiters. The string between the brackets delimiters is interpreted as a literal character string.

Oracle Database 11g: SQL Fundamentals | 1 - 23

Duplicate Rows

The default display of queries is all rows, including duplicate

rows.

SELECT department id

FROM employees;
DEPARTMENT _ID
1 a0
2 a0
3 a0
4 50
] G0

SELECT [DISTINCT |department id @

FROM employees;

DEPARTMENT ID
1 il
2 a0
3 20
4 110

Copyright © 2009, Oracle. All rights reserved.

Duplicate Rows

Unless you indicate otherwise, SQL displays the results of a query without eliminating the duplicate
rows. The first example in the slide displays all the department numbers from the EMPLOYEES table.

Note that the department numbers are repeated.

To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT clause
immediately after the SELECT keyword. In the second example in the slide, the EMPLOYEES table
actually contains 20 rows, but there are only seven unique department numbers in the table.

You can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier affects
all the selected columns, and the result is every distinct combination of the columns.

SELECT DISTINCT department id, job id
FROM employees;

DEPARTMENT D JOB_ID
110 AC_ACCOUNT
a0 AD_WP
50 ST_CLERK
a0 S&_REP
50 ST_MAN

L3 I O s L

Oracle Database 11g: SQL Fundamentals | 1 -24

Lesson Agenda

« Basic SELECT statement

* Arithmetic expressions and NULL values in the SELECT
statement

e Column aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 1 -25

Displaying the Table Structure

* Use the DESCRIBE command to display the structure of a
table.

* Or, select the table in the Connections tree and use the
Columns tab to view the table structure.

DESC [RIBE] tablename

4 connections

EI% myconnection

EHE Takles
- CoUNTRES
5 5 @
' Columns %‘Cmsdmirts Grants | Statistics |Cdurnn Stetistics | Trigpers |Deperﬂenc,ies|beials Partitions |Inm9m |ﬁ
w17 @ Adions...
EHE cobmnbiame [§Dotn Type |8 nuitokie |ato Detoutt [H coLummin | primery ey [coments
' CEPARTMENT I WUKMBER(4 0) Mo nul) 1 1 Primary key column of depadments tebl
- DEPARTMENT_M... VARCHARZ{ZDBYTE) Mo (nul) 2 (nul) A ned nul column thal shows rame ol &
- TSNAGER_ID MUWBERIE,) ez frl) 3 (nul) Menager_id of & deparment. Forelgn ke
LOWZATICN _ID MUKMBER(4 0} Yoz (nuty 4 (nul) Location id where o department is locet

Copyright © 2009, Oracle. All rights reserved.

Displaying the Table Structure

In SQL Developer, you can display the structure of a table by using the DESCRIBE command. The

command displays the column names and the data types, and it shows you whether a column must
contain data (that is, whether the column has a NOT NULL constraint).

In the syntax, table name is the name of any existing table, view, or synonym that is accessible to
the user.

Using the SQL Developer GUI interface, you can select the table in the Connections tree and use the
Columns tab to view the table structure.

Note: The DESCRIBE command is supported by both SQL*Plus and SQL Developer.

Oracle Database 11g: SQL Fundamentals | 1 - 26

Using the DESCRIBE Command

DESCRIBE employees

DESCRIBE employees

Name Hull Type
EMPLOYEE_ID HNO0T NULL NUIMEER.(G)
FIRAT_NAME WARCHARZ (20)
LAST NAME NOT NULL WARCHARZ(Z5)
EMATL HOT NULL WARCHARZ (Z5)
PHONE_NUMEER VARCHARZ (20)
HIRE_DATE HOT NULL DATE

J0E_ID HOT NULL VARCHARZ(10)
SALARY IUMEEER.(&,2)
COMMISSION_FCT HIUMEER.(2,2)
MANAGER_ID IMMEEE. (&)
DEPARTMENT ID IMEEE. | 4)

11 rows selected

Copyright © 2009, Oracle. All rights reserved.

Using the DESCRIBE Command

The example in the slide displays information about the structure of the EMPLOYEES table using the
DESCRIBE command.

In the resulting display, Null indicates that the values for this column may be unknown. NOT NULL
indicates that a column must contain data. 7ype displays the data type for a column.

The data types are described in the following table:

Data Type Description

NUMBER (p, 8) Number value having a maximum number of digits p, with s
digits to the right of the decimal point

VARCHAR?2 (5) Variable-length character value of maximum size s

DATE Date and time value between January 1, 4712 B.C. and
December 31, A.D. 9999.

CHAR (s) Fixed-length character value of size s

Oracle Database 11g: SQL Fundamentals | 1 - 27

Quiz

|dentify the SELECT statements that execute successfully.

SELECT first name, last name, job id, salary*12
1. AS Yearly Sal
FROM employees;

SELECT first name, last name, job id, salary*12
2. yearly sal
FROM employees;

SELECT first name, last name, job id, salary AS
3. | yearly sal
FROM employees;

SELECT first name+last name AS name, job Id,
4. salary*12 yearly sal
FROM employees;

Copyright © 2009, Oracle. All rights reserved.

Answer: 2, 3

Oracle Database 11g: SQL Fundamentals | 1 - 28

Summary

In this lesson, you should have learned how to:
* Write a SELECT statement that:
— Returns all rows and columns from a table
— Returns specified columns from a table

— Uses column aliases to display more descriptive column
headings

SELECT *|{[DISTINCT] column|/expression [alias],...}
FROM table;

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to retrieve data from a database table with the SELECT
statement.

SELECT *|{[DISTINCT] column [alias],...}
FROM table;

In the syntax:

SELECT is a list of one or more columns

* selects all columns

DISTINCT suppresses duplicates
column|expression selects the named column or the expression
alias gives the selected columns different headings
FROM table specifies the table containing the columns

Oracle Database 11g: SQL Fundamentals | 1 -29

Practice 1: Overview

This practice covers the following topics:
« Selecting all data from different tables
» Describing the structure of tables

« Performing arithmetic calculations and specifying column
names

Copyright © 2009, Oracle. All rights reserved.

Practice 1: Overview

In this practice, you write simple SELECT queries. The queries cover most of the SELECT clauses
and operations that you learned in this lesson.

Oracle Database 11g: SQL Fundamentals| 1 -30

Practice 1
Part 1

Test your knowledge:
1. The following SELECT statement executes successfully:

SELECT last name, job id, salary AS Sal
FROM employees;

True/False
2. The following SELECT statement executes successfully:
SELECT *
FROM job grades;

True/False
3. There are four coding errors in the following statement. Can you identify them?
SELECT employee id, last name
sal x 12 ANNUAL SALARY
FROM employees;

Part 2

Note the following points before you begin with the practices:
» Save all your lab files at the following location: D: \1abs\SQL1\labs

» Enter your SQL statements in a SQL Worksheet. To save a script in SQL Developer, make sure
the required SQL worksheet is active and then from the File menu, select Save As or right-click

in the SQL Worksheet and select Save file to save your SQL statement as a

lab_<lessonno>_ <stepno>.sql script. When you are modifying an existing script, make sure you

use Save As to save it with a different filename.

» To run the query, click the Execute Statement icon in the SQL Worksheet. Alternatively, you
can press [F9]. For DML and DDL statements, use the Run Script icon or press [F5].
» After you have executed the query, make sure that you do not enter your next query in the same

worksheet. Open a new worksheet.

You have been hired as a SQL programmer for Acme Corporation. Your first task is to create some

reports based on data from the Human Resources tables.

4. Your first task is to determine the structure of the DEPARTMENTS table and its contents.

DEZCRIEE departments

Name all Tvpe
DEPARTMENT ID NOT NUOLL NUMEEER.(4)
DEPARTMENT INAME NOT NUOLL WARCHARZ (30)
MANAGEE, I NUMEEE. (&)
LOCATTION TD NUMEEER. | 4)

4 rows selected

Oracle Database 11g: SQL Fundamentals | 1 - 31

Practice 1 (continued)
Part 2 (continued)

B ceEParRTMENT IO |E DEPARTMEMT MAME

B manscER D

B LocaTion D

Mmoo~ @ e W k=

10 Administration

20 Marketing

S0 Zhipping

GOIT

gl Sales

90 Execitive
110 Accounting
190 Contracting

200
2m
124
103
149
100
205
(rull

1700
1800
1500
1400
2300
1700
1700
1700

DEZCRIEE emplovees
Name

EMPFLOYEE ID
FIRST NAME
LAST NAME
EMATL
PHONE_NUMEER
HIFE DATE
JOE_ID

SALART
COMMISSION FCT
MANAGER_ID
DEFPARTMENT ID

ll rows selected

NOT HOLL

NOT MULL
HNOT MULL

NOT MULL
NOT MULL

NITMEEE: {6)
VARCHARZ [20)
VARCHARZ (25)
VARCHARZ (25)
VARCHARZ [20
DATE
VARCHARZ {10
NUMEEE (&, 2]
NUMEER (2, 2]
NITMEER. (G)
NITMEEE: | 4)

The HR department wants a query to display the last name, job ID, hire date, and employee ID for
each employee, with the employee ID appearing first. Provide an alias STARTDATE for the

HIRE DATE column. Save your SQL statement to a file named 1ab 01 05.sqgl so that you can
dispatch this file to the HR department.

Oracle Database 11g: SQL Fundamentals | 1 - 32

Practice 1 (continued)
Part 2 (continued)

6. Test your query in the 1ab 01 05.sql file to ensure that it runs correctly.

Note: After you have executed the query, make sure that you do not enter your next query in the
same worksheet. Open a new worksheet.

EMPLCYEE_ID LAST MAME JOB D |STARTDATE
1 100 King AD_PRES 17-JUN-8F
2 101 Kochhar AD WP 21-SEP-59
3 102 De Haan AD WP 13-JAN-93
4 103 Hunold IT_PROG 03-JAN-90
5 104 Ernst IT_PROG 21 MY -9
B 107 Lorentz IT_PROG 07-FEB-99
7 124 Mourgos ST_MARN 16NN -9
5 141 Rajs ST CLERK ~ 17-0CT-95
g 142 Davies ST_CLERK ~ 28-JAN-97
10 143 Matos ST CLERK 15-MAR-93
19 205 Higgins AC_MGR 07 -JUN-94
20 206 Gietz AC_ACCOUNT 07-JUN-94

7. The HR department wants a query to display all unique job IDs from the EMPLOYEES table.

JOB_ID
AC_ACCOUNT
AC_MGR
AD_ASST
AD_PRES
AD WP
IT_PROG
MkC_PAA
Mk_REF

9 Sa_MaN
10 S&_REP

11 ST_CLERK
12 ST_MAN

m -~ m h A= L k=

Oracle Database 11g: SQL Fundamentals | 1 - 33

Practice 1 (continued)
Part 3

If you have time, complete the following exercises:
8. The HR department wants more descriptive column headings for its report on employees. Copy
the statement from 1lab 01 05.sqgl to a new SQL Worksheet. Name the column headings
Emp #, Employee, Job, and Hire Date, respectively. Then run your query again.

Emp # Employes Jok Hire Date
1 100 King AD_PRES 17-JUr-57
2 101 Kochhar AD VP 21-SEP-59
3 102 D Haan AD VP 13-JAR-93
4 103 Hunold IT_PRC 03-JAak-90
5 104 Ernst IT_PRC 29 M9
G 107 Lorentz IT_PRC 07 -FEE-99
7 124 Mourgos ST_Map 16-MC-99
g 141 Raj= ST_CLERK 17-CCT-95
9 142 Davies ST_CLERK 29-JAam-97
10 143 Matos ST_CLERK 15-MAR-95
19 205 Higgins AC MGE a7 -Jur-94
20 206 Gietz AC_ACCOUMT 07 -Jur-94

9. The HR department has requested a report of all employees and their job IDs. Display the last
name concatenated with the job ID (separated by a comma and space) and name the column
Employee and Title.

Employee and Title
1 Abel, 58 REP

2 Daviez, ST_CLERK

3 De Haan, &AD_~F

4 Ernst, IT_PROG

5 Fay, MK _REP

G Gietz, AC_ACCOLRNT
7

g

9

0

Grant, 54 _REP
Hart=stain, bk _hAR
Higgins, AC_MGR
Hunold, IT_PROG

19 Whalen, &0_ASST
20 Tlotkey, So_hAN

Oracle Database 11g: SQL Fundamentals| 1 - 34

Practice 1 (continued)
Part 3 (continued)
If you want an extra challenge, complete the following exercise:

10. To familiarize yourself with the data in the EMPLOYEES table, create a query to display all the

data from that table. Separate each column output by a comma. Name the column title
THE_OUTPUT.

B> Resutts | [script output | B Expiain | B8 sutatrace | @0EMS Output | @) owia Output |
Fesults:

THE_OUTPUT

100, Steven King SKING 515123 4567 AD_PRES, 17-JUN-57,24000,,90

101 Meena Kochhar MKOCHHAR, 515123 4568 40 _vP 100,21-SEP-53,17000,,90
102 Lex De Haan LDEHAAMN 515125 4569 AD_WP 100,13-J4M-93 17000, 90

103, &lexander Hunold AHUMNOLD 590,423 4567 IT_PROG,102,03-J4M-90,9000, 60
104 Bruce Ernst BERMST 590,423 4568 IT_PROG 105,21 -MaY-91 5000, 60

107 Diana Lorentz, DLORENTZ 590.423.5567 IT_PROG 103,07 -FEB-99,4200, 60

124 Kevin Mourgos KMOURGOS 550123 5234 ST_MAN,100,16-MOY-99 5500, 50
141, Trenna Rajs, TRAJS 650121 6009, 5T_CLERK,124,17-0CT-95,3500,,50

142 Curtis Davies COAYIES, 650121 2994 5T_CLERK,124,29-JAN-97 3100, 50

143 Randall Matos RMATOS 550121 2874, 5T_CLERK, 124 1 5-MAR-95, 2600, 50

o o @~ @D h B W k=

—

19 205 Shelley Higgins SHIGGINS 515 125 6080 AC_MGR 101 07-JUN-94 12000, 110
20 206 William,Gietz WSIETZ 515123 8181 AC_ACCOUNT 205 07-JUN-94 §300,110

Oracle Database 11g: SQL Fundamentals| 1 -35

Restricting and Sorting Data

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Limit the rows that are retrieved by a query
« Sort the rows that are retrieved by a query

« Use ampersand substitution to restrict and sort output at
run time

Copyright © 2009, Oracle. All rights reserved.

Objectives

When retrieving data from the database, you may need to do the following:
* Restrict the rows of data that are displayed
* Specify the order in which the rows are displayed

This lesson explains the SQL statements that you use to perform the actions listed above.

Oracle Database 11g: SQL Fundamentals | 2 -2

Lesson Agenda

* Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL conditions

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
» Substitution variables
* DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 2 -3

Limiting Rows Using a Selection

EMPLOYEES

EvPLOVEE_ID ([LasT_mame 8 Joup |{ DEPARTMENT D
1 100 King AD_PRES a0
2 101 Kochbar AD_VP a0
3 102 De Hasn AD_VP a0
4 103 Hunold T_PROG g0
5 104 Ernst T_PROG g0
& 107 Lorertz IT_PROG &0

“retrieve all
employees in

department 90” 1
emPLOVEE_D |[§ LasT_meme [Joeup |B DEPARTMENT D
1 100 King AD_PRES 30
2 101 Kachhar AD_P a0
3 102 De Haan AD_P 30

Copyright © 2009, Oracle. All rights reserved.

Limiting Rows Using a Selection

In the example in the slide, assume that you want to display all the employees in department 90. The
rows with a value of 90 in the DEPARTMENT _ID column are the only ones that are returned. This
method of restriction is the basis of the WHERE clause in SQL.

Oracle Database 11g: SQL Fundamentals| 2 -4

Limiting the Rows That Are Selected

* Restrict the rows that are returned by using the WHERE
clause:

SELECT *|{[DISTINCT] column/expression [alias],...}
FROM table
[WHERE condition(s)];

* The WHERE clause follows the FROM clause.

Copyright © 2009, Oracle. All rights reserved.

Limiting the Rows That Are Selected

You can restrict the rows that are returned from the query by using the WHERE clause. A WHERE
clause contains a condition that must be met and it directly follows the FROM clause. If the condition
is true, the row meeting the condition is returned.

In the syntax:
WHERE restricts the query to rows that meet a condition

condition is composed of column names, expressions,
constants, and a comparison operator. A condition specifies a
combination of one or more expressions and logical (Boolean)
operators, and returns a value of TRUE, FALSE, or UNKNOWN.
The WHERE clause can compare values in columns, literal, arithmetic expressions, or functions. It
consists of three eclements:
* Column name
» Comparison condition
* Column name, constant, or list of values

Oracle Database 11g: SQL Fundamentals| 2 -5

Using the wHERE Clause

SELECT employee id, last name, job id, department id
FROM employees
WHERE department id = 90 |;

EMPLO‘(EE_ID| LAST_RAME | JOB_ID | DEPARTMENT ID

1 100 King AD_PRES 90
2 101 Kochhar AD_WP 90
3 102 De Haan AD_VP a0

Copyright © 2009, Oracle. All rights reserved.

Using the WHERE Clause

In the example, the SELECT statement retrieves the employee 1D, last name, job ID, and department
number of all employees who are in department 90.

Note: You cannot use column alias in the WHERE clause.

Oracle Database 11g: SQL Fundamentals | 2 -6

Character Strings and Dates

« Character strings and date values are enclosed with single
quotation marks.

 Character values are case-sensitive and date values are
format-sensitive.

* The default date display format is DD-MON-RR.

SELECT last name, job id, department id
FROM employees
WHERE last name =|'Whalen'

e

SELECT last name
FROM employees
WHERE hire date = |'17-FEB-96'|;

Copyright © 2009, Oracle. All rights reserved.

Character Strings and Dates

Character strings and dates in the WHERE clause must be enclosed with single quotation marks (' ").
Number constants, however, should not be enclosed with single quotation marks.

All character searches are case-sensitive. In the following example, no rows are returned because the
EMPLOYEES table stores all the last names in mixed case:

SELECT last name, job id, department id

FROM employees

WHERE last name = 'WHALEN';

Oracle databases store dates in an internal numeric format, representing the century, year, month,
day, hours, minutes, and seconds. The default date display is in the DD-MON-RR format.

Note: For details about the RR format and about changing the default date format, see the lesson
titled “Using Single-Row Functions to Customize Output.” Also, you learn about the use of single-
row functions such as UPPER and LOWER to override the case sensitivity in the same lesson.

Oracle Database 11g: SQL Fundamentals | 2 -7

Comparison Operators
= Equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
<> Not equal to
BETWEEN Between two values (inclusive)
...AND. ..
IN (set) Match any of a list of values
LIKE Match a character pattern
1S NULL Is a null value

Copyright © 2009, Oracle. All rights reserved.

Comparison Operators

Comparison operators are used in conditions that compare one expression to another value or
expression. They are used in the WHERE clause in the following format:

Syntax
WHERE expr operator value
Example
WHERE hire date = '01-JAN-95'
WHERE salary >= 6000
WHERE last name = 'Smith'

An alias cannot be used in the WHERE clause.

Note: The symbols ! = and "= can also represent the not equal to condition.

Oracle Database 11g: SQL Fundamentals | 2 -8

Using Comparison Operators

SELECT last name, salary
FROM employees
WHERE salary|<= 3000 |;

LasT_Hane [saLary
1 Matos 2600
2 Vargas 2500

Copyright © 2009, Oracle. All rights reserved.

Using Comparison Operators
In the example, the SELECT statement retrieves the last name and salary from the EMPLOYEES

table for any employee whose salary is less than or equal to $3,000. Note that there is an explicit
value supplied to the WHERE clause. The explicit value of 3000 is compared to the salary value in
the SALARY column of the EMPLOYEES table.

Oracle Database 11g: SQL Fundamentals| 2-9

Range Conditions Using the BETWEEN Operator

Use the BETWEEN operator to display rows based on a range of
values:

SELECT last name, salary
FROM employees

WHERE salarleETWEEN 2500 AND 3500|;

Lower limit Upper limit

H LAST_NAME|E SALARY|
1 Rajs 3500
2 Davies 3100
3 Matos 2600
4 Yargas 2500

Copyright © 2009, Oracle. All rights reserved.

Range Conditions Using the BETWEEN Operator

You can display rows based on a range of values using the BETWEEN operator. The range that you
specify contains a lower limit and an upper limit.

The SELECT statement in the slide returns rows from the EMPLOYEES table for any employee
whose salary is between $2,500 and $3,500.

Values that are specified with the BETWEEN operator are inclusive. However, you must specify the
lower limit first.
You can also use the BETWEEN operator on character values:

SELECT last name

FROM employees

WHERE last name BETWEEN 'King' AND 'Smith';

-E LAST _MAME
1 King
2 Kochhar
3 Lorertz
4 mMatos

S Mourgos
E Rajs

Oracle Database 11g: SQL Fundamentals| 2-10

Membership Condition Using the IN Operator

Use the IN operator to test for values in a list:

SELECT employee id, last name, salary, manager id
FROM employees
WHERE manager id|IN (100, 101, 201)

~e

Y emriovee o B Last_mame 8 salery [§ manscer o |
1 101 Kochhar 17000 100
2 102 De Haan 17000 100
3 124 Mourgos S800 100
4 149 Zlotkey 10500 100
5 201 Hartstein 13000 100
B 200 Whalen 4400 10
7 205 Higgins 12000 10
8 202 Fay 5000 201

Copyright © 2009, Oracle. All rights reserved.

Membership Condition Using the IN Operator

To test for values in a specified set of values, use the IN operator. The condition defined using the
IN operator is also known as the membership condition.

The slide example displays employee numbers, last names, salaries, and managers’ employee
numbers for all the employees whose manager’s employee number is 100, 101, or 201.

The IN operator can be used with any data type. The following example returns a row from the
EMPLOYEES table, for any employee whose last name is included in the list of names in the WHERE

clause:
SELECT employee id, manager id, department id
FROM employees
WHERE last name IN ('Hartstein', 'Vargas');

If characters or dates are used in the list, they must be enclosed with single quotation marks (' ').

Note: The IN operator is internally evaluated by the Oracle server as a set of OR conditions, such as
a=valuel or a=value?2 or a=value3. Therefore, using the IN operator has no performance

benefits and is used only for logical simplicity.

Oracle Database 11g: SQL Fundamentals | 2 - 11

Pattern Matching Using the LIKE Operator

* Use the LIKE operator to perform wildcard searches of
valid search string values.
« Search conditions can contain either literal characters or
numbers:
— % denotes zero or many characters.
— _ denotes one character.

SELECT first name
FROM employees
WHERE first name|LIKE 'S%'|;

Copyright © 2009, Oracle. All rights reserved.

Pattern Matching Using the LIKE Operator

You may not always know the exact value to search for. You can select rows that match a character
pattern by using the LIKE operator. The character pattern—matching operation is referred to as a
wildcard search. Two symbols can be used to construct the search string.

Symbol Description

o\°

Represents any sequence of zero or more characters

Represents any single character

The SELECT statement in the slide returns the first name from the EMPLOYEES table for any
employee whose first name begins with the letter “S.” Note the uppercase “S.” Consequently, names

(193]

beginning with a lowercase “s” are not returned.

The LIKE operator can be used as a shortcut for some BETWEEN comparisons. The following

example displays the last names and hire dates of all employees who joined between January, 1995
and December, 1995:

SELECT last name, hire date

FROM employees

WHERE hire date LIKE '%95';

Oracle Database 11g: SQL Fundamentals | 2 -12

Combining Wildcard Characters

* You can combine the two wildcard characters (%, _) with
literal characters for pattern matching:

SELECT last name
FROM employees
WHERE last name |[LIKE ' 0%'|;

B LasT mame
1 Kochhar
2 Larertz
3 Mourgos

* You can use the ESCAPE identifier to search for the actual
% and _ symbols.

Copyright © 2009, Oracle. All rights reserved.

Combining Wildcard Characters
The % and _ symbols can be used in any combination with literal characters. The example in the slide
displays the names of all employees whose last names have the letter “o0” as the second character.
ESCAPE Identifier
When you need to have an exact match for the actual ¢ and characters, use the ESCAPE identifier.
This option specifies what the escape character is. If you want to search for strings that contain SA

you can use the following SQL statement:
SELECT employee id, last name, job_id
FROM employees WHERE job id LIKE '%SA_%' ESCAPE '\';

EMPLOVEE D (B LAST_namE JOB_ID
A\ 149 Zlotkey S8,_MAN
2 174 Abel S8 _REP
3 176 Tavlor S8, REP
4 178 Grant S8,_REP

The ESCAPE identifier identifies the backslash (\) as the escape character. In the SQL statement, the
escape character precedes the underscore (_). This causes the Oracle server to interpret the
underscore literally.

Oracle Database 11g: SQL Fundamentals| 2-13

Using the NULL Conditions

Test for nulls with the IS NULL operator.

SELECT last name, manager id
FROM employees

WHERE |manager_id IS NULL |;

B Last_name | Manacer D |
1 King {rll}

Copyright © 2009, Oracle. All rights reserved.

Using the NULL Conditions
The NULL conditions include the IS NULL condition and the IS NOT NULL condition.

The IS NULL condition tests for nulls. A null value means that the value is unavailable, unassigned,
unknown, or inapplicable. Therefore, you cannot test with =, because a null cannot be equal or
unequal to any value. The slide example retrieves the last names and managers of all employees who
do not have a manager.

Here is another example: To display the last name, job ID, and commission for all employees who
are not entitled to receive a commission, use the following SQL statement:

SELECT last name, job id, commission pct

FROM employees

WHERE commission pct IS NULL;

LAST MAME JOE_ID COMMISSION,_PCT

1 King AD_PRES (il
2 Kochhar AD WP (i)
15 Higginz AC MGRE (ralll
16 Gietz A ACCOUNT Crwll)

Oracle Database 11g: SQL Fundamentals| 2 -14

Defining Conditions Using the Logical Operators

Operator Meaning

AND Returns TRUE if both component conditions
are true

OR Returns TRUE if either component condition
is true

NOT Returns TRUE if the condition is false

Copyright © 2009, Oracle. All rights reserved.

Defining Conditions Using the Logical Operators

A logical condition combines the result of two component conditions to produce a single result based
on those conditions or it inverts the result of a single condition. A row is returned only if the overall
result of the condition is true.

Three logical operators are available in SQL:
« AND

« OR
« NOT

All the examples so far have specified only one condition in the WHERE clause. You can use several
conditions in a single WHERE clause using the AND and OR operators.

Oracle Database 11g: SQL Fundamentals| 2-15

Using the AND Operator

AND requires both the component conditions to be true:

SELECT employee id, last name, job id, salary
FROM employees

WHERE |salary >= 10000
AND job id LIKE '%MAN%'

~e

empLovEE_D [LasT_neme (B Josp @ saLary
1 143 Ziotkey Sa_MAN 10500
2 201 Hartstein MK _MAR 13000

Copyright © 2009, Oracle. All rights reserved.

Using the AND Operator

In the example, both the component conditions must be true for any record to be selected. Therefore,
only those employees who have a job title that contains the string ‘MAN’ and earn $10,000 or more
are selected.

All character searches are case-sensitive, that is no rows are returned if ‘MAN’ is not uppercase.
Further, character strings must be enclosed with quotation marks.

AND Truth Table
The following table shows the results of combining two expressions with AND:

AND TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL

Oracle Database 11g: SQL Fundamentals| 2-16

Using the OR Operator

OR requires either component condition to be true:

SELECT employee id, last name, job id, salary
FROM employees
WHERE |salary >= 10000

OR job id LIKE '%MAN%'| ;
empLovEE_D |§ LasT vame (@ soeLp (B saLary
1 100 King AD_PRES 24000
2 101 Kochhar AD_WP 17000
3 102 De Haan AD_VP 17000
4 124 Mourgos ST_MaM 5300
5 149 Tiotkey Sa_MAN 10500
C 174 Lbel S4_REP 11000
7 201 Hartstein hiks_MAM 13000
5 205 Higgins AC_MGR 12000

Copyright © 2009, Oracle. All rights reserved.

Using the OR Operator

In the example, either component condition can be true for any record to be selected. Therefore, any
employee who has a job ID that contains the string ‘MAN’ or earns $10,000 or more is selected.

OR Truth Table

The following table shows the results of combining two expressions with OR:

OR TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

Oracle Database 11g: SQL Fundamentals | 2 -17

Using the NOT Operator

SELECT last name, job id
FROM employees

WHERE

job id
NOT IN ('IT PROG',

'ST CLERK',

H LASTJHAME|E JOB_ID |

1 De Haan
2 Fay

3 Gietz

4 Hartstein
5 Higgins

& King

¥ Kochhar
& Mourgos
3 Whalen

10 Flotkey

AD_WP
MH_REF
AC_ACCOUNT
WK _PA
AC_MGR
AD_PRES
AD_WP
ST_MAN
AD_ASST
SIS

Copyright © 2009, Oracle. All rights reserved.

'SA_REP')

~e

Using the NOT Operator

The slide example displays the last name and job ID of all employees whose job ID is not IT PROG,

ST_CLERK,OrSA_REP.
NOT Truth Table

The following table shows the result of applying the NOT operator to a condition:

NOT TRUE FALSE NULL
FALSE TRUE NULL
Note: The NOT operator can also be used with other SQL operators, such as BETWEEN, LIKE, and
NULL.
WHERE job_id NOT 1IN ('AC_ACCOUNT', 'AD VP')
WHERE salary NOT BETWEEN 10000 AND 15000
WHERE last name NOT LIKE 'S3%A%'
WHERE commission pct IS NOT NULL

Oracle Database 11g: SQL Fundamentals| 2-18

Lesson Agenda

« Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
* Substitution variables
« DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 2 -19

Rules of Precedence

Operator Meaning

1 Arithmetic operators

Concatenation operator

Comparison conditions

IS [NOT] NULL, LIKE, [NOT] IN

[NOT] BETWEEN

Not equal to

NOT logical condition

AND logical condition

(ol el NN I >N ING I BF A BV BN G}

OR logical condition

You can use parentheses to override rules of precedence.

Copyright © 2009, Oracle. All rights reserved.

Rules of Precedence

The rules of precedence determine the order in which expressions are evaluated and calculated. The
table in the slide lists the default order of precedence. However, you can override the default order by
using parentheses around the expressions that you want to calculate first.

Oracle Database 11g: SQL Fundamentals | 2 - 20

Rules of Precedence

SELECT last name, job id, salary
FROM employees

WHERE job id = 'SA REP'
OR -[::job_id = 'AD PRES' (::)
AND salary > 15000;
LAST MAME | JOB_ID | SALARY |
1 King AD_PRES 24000
2 Ahel =4 _REP 14000
3 Taylor S8, REP 500
4 Grant =4 _REP Fana
SELECT last name, job id, salary
FROM employees <::>
WHERE_, (job_id = 'SA REP'
OR ,job _id = 'AD PRES')
AND salary > 15000;

LAST_NAME| JOB_ID | SAL.&RY|
1 King AD_PRES 24000

Copyright © 2009, Oracle. All rights reserved.

Rules of Precedence (continued)
1. Precedence of the AND Operator: Example

In this example, there are two conditions:
* The first condition is that the job ID is AD PRES and the salary is greater than $15,000.

* The second condition is that the job ID is SA_ REP.
Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president and earns more than $15,000, or if the employee is a
sales representative.”

2. Using Parentheses: Example

In this example, there are two conditions:
 The first condition is that the job ID is AD PRES or SA_ REP.

» The second condition is that the salary is greater than $15,000.
Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president or a sales representative, and if the employee earns
more than $15,000.”

Oracle Database 11g: SQL Fundamentals | 2 - 21

Lesson Agenda

« Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
» Substitution variables
* DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 2 - 22

Using the ORDER BY Clause

» Sort retrieved rows with the ORDER BY clause:
— ASC: Ascending order, default
— DESC: Descending order

e The ORDER BY clause comes last in the SELECT
statement:

SELECT last name, job id, department id, hire date
FROM employees
ORDER BY hire date|;

B LasT nane B JoBiD |B DEPARTMENT D |HRE_DATE
1 King AD_PRES 80 17-JUR-57
2 Whalen AD_ASST 10 17-3EP-87
3 Wochhar AD_WP a0 21-SEP-89
4 Hurold T_PROG B0 03-JAN-90
5 Ernst T_PROG B0 21 -MAY-G1
& De Haan AD_WP 80 1 3-J A5

Copyright © 2009, Oracle. All rights reserved.

Using the ORDER BY Clause

The order of rows that are returned in a query result is undefined. The ORDER BY clause can be used
to sort the rows. However, if you use the ORDER BY clause, it must be the last clause of the SQL
statement. Further, you can specify an expression, an alias, or a column position as the sort condition.

Syntax
SELECT expr
FROM table
[WHERE condition (s)]

[ORDER BY {column, expr, numeric position} [ASC|DESC]];

In the syntax:

ORDER BY specifies the order in which the retrieved rows are displayed
ASC orders the rows in ascending order (this is the default order)
DESC orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle server may not fetch
rows in the same order for the same query twice. Use the ORDER BY clause to display the rows in a
specific order.

Note: Use the keywords NULLS FIRST or NULLS LAST to specify whether returned rows
containing null values should appear first or last in the ordering sequence.

Oracle Database 11g: SQL Fundamentals | 2 - 23

Sorting

« Sorting in descending order:

SELECT last name, job id, department id, hire date
FROM employees
ORDER BY hire date|DESC|;

« Sorting by column alias:

SELECT employee id, last name, salary*12|annsal @

FROM employees

Copyright © 2009, Oracle. All rights reserved.

Sorting
The default sort order is ascending:
* Numeric values are displayed with the lowest values first (for example, 1 to 999).
» Date values are displayed with the earliest value first (for example, 01-JAN-92 before
01-JAN-95).
» Character values are displayed in the alphabetical order (for example, “A” first and “Z” last).
» Null values are displayed last for ascending sequences and first for descending sequences.
* You can also sort by a column that is not in the SELECT list.

Examples:
1. To reverse the order in which the rows are displayed, specify the DESC keyword after the
column name in the ORDER BY clause. The slide example sorts the result by the most recently

hired employee.
2. You can also use a column alias in the ORDER BY clause. The slide example sorts the data by

annual salary.

Oracle Database 11g: SQL Fundamentals | 2 - 24

Sorting

« Sorting by using the column’s numeric position:

SELECT last name, job id, department id, hire date

FROM employees
ORDER BY|[3; |

« Sorting by multiple columns:

SELECT last name, department id, salary

FROM employees @
ORDER BY department id, salary DESC;

Copyright © 2009, Oracle. All rights reserved.

Sorting (continued)
Examples:

3. You can sort query results by specifying the numeric position of the column in the SELECT
clause. The slide example sorts the result by the department id as this column is at the
third position in the SELECT clause.

4. You can sort query results by more than one column. The sort limit is the number of columns in
the given table. In the ORDER BY clause, specify the columns and separate the column names
using commas. If you want to reverse the order of a column, specify DESC after its name.

Oracle Database 11g: SQL Fundamentals | 2 -25

Lesson Agenda

« Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
« Substitution variables
* DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 2 - 26

Substitution Variables

...salary=7? ...
, ... department_id=7? ...
“ ..last name=?..

1
| want
__/- to query
‘-" . different
g [values.

Copyright © 2009, Oracle. All rights reserved.

Substitution Variables

So far, all the SQL statements were executed with predetermined columns, conditions and their
values. Suppose that you want a query that lists the employees with various jobs and not just those
whose job IDis SA REP. You can edit the WHERE clause to provide a different value each time
you run the command, but there is also an easier way.

By using a substitution variable in place of the exact values in the WHERE clause, you can run the
same query for different values.

You can create reports that prompt users to supply their own values to restrict the range of data
returned, by using substitution variables. You can embed substitution variables in a command file or
in a single SQL statement. A variable can be thought of as a container in which values are
temporarily stored. When the statement is run, the stored value is substituted.

Oracle Database 11g: SQL Fundamentals | 2 - 27

Substitution Variables

» Use substitution variables to:
— Temporarily store values with single-ampersand (&) and
double-ampersand (&&) substitution
« Use substitution variables to supplement the following:
— WHERE conditions
— ORDER BY clauses
— Column expressions
— Table names
— Entire SELECT statements

Copyright © 2009, Oracle. All rights reserved.

Substitution Variables (continued)
You can use single-ampersand (&) substitution variables to temporarily store values.

You can also predefine variables by using the DEFINE command. DEFINE creates and assigns a
value to a variable.

Restricted Ranges of Data: Examples
» Reporting figures only for the current quarter or specified date range
» Reporting on data relevant only to the user requesting the report
» Displaying personnel only within a given department

Other Interactive Effects

Interactive effects are not restricted to direct user interaction with the WHERE clause. The same
principles can also be used to achieve other goals, such as:

+ Obtaining input values from a file rather than from a person

 Passing values from one SQL statement to another

Note: Both SQL Developer and SQL* Plus support substitution variables and the
DEFINE/UNDEFINE commands. Neither SQL Developer nor SQL* Plus support validation checks

(except for data type) on user input. If used in scripts that are deployed to users, substitution variables
can be subverted for SQL injection attacks.

Oracle Database 11g: SQL Fundamentals | 2 - 28

Using the Single-Ampersand Substitution
Variable

Use a variable prefixed with an ampersand (&) to prompt the
user for a value:

SELECT employee id, last name, salary, department id
FROM employees

WHERE employee id =|&employee_nu.m|;

EMPLIOYEE_MLUIR:
| |

| 024 | | Cancel |

Copyright © 2009, Oracle. All rights reserved.

Using the Single-Ampersand Substitution Variable

When running a report, users often want to restrict the data that is returned dynamically. SQL*Plus
or SQL Developer provides this flexibility with user variables. Use an ampersand (&) to identify each
variable in your SQL statement. However, you do not need to define the value of each variable.

Notation Description

&user variable Indicates a variable in a SQL statement; if the variable
does not exist, SQL*Plus or SQL Developer prompts the
user for a value (the new variable is discarded after it is
used.)

The example in the slide creates a SQL Developer substitution variable for an employee number.
When the statement is executed, SQL Developer prompts the user for an employee number and then
displays the employee number, last name, salary, and department number for that employee.

With the single ampersand, the user is prompted every time the command is executed if the variable
does not exist.

Oracle Database 11g: SQL Fundamentals | 2 - 29

Using the Single-Ampersand Substitution
Variable

Enter Substitution Yariable

EMPLIOYEE_MUN:

101 |

| (0124 E || Cancel l

empLOVEEID [LasT mame [§ saLary [{ DEparTMENT D
1 101 Kochhar 17000 a0

Copyright © 2009, Oracle. All rights reserved.

Using the Single-Ampersand Substitution Variable (continued)

When SQL Developer detects that the SQL statement contains an ampersand, you are prompted to
enter a value for the substitution variable that is named in the SQL statement.

After you enter a value and click the OK button, the results are displayed in the Results tab of your
SQL Developer session.

Oracle Database 11g: SQL Fundamentals | 2 - 30

Character and Date Values with
Substitution Variables

Use single quotation marks for date and character values:

SELECT last name, department id, salary*12
FROM employees

WHERE job id =|'&job_tit1e1 ;

Enter Substitution Yariable EJ
JOB_TITLE:
IT_PROG] |
| QK | | Cancel |
N
LasT_mave @ DEParTMENT D B saLARY*12
1 Hurold 50 108000
2 Ernst &0 72000
3 Lorentz &0 a0400

Copyright © 2009, Oracle. All rights reserved.

Character and Date Values with Substitution Variables
In a WHERE clause, date and character values must be enclosed with single quotation marks. The
same rule applies to the substitution variables.
Enclose the variable with single quotation marks within the SQL statement itself.

The slide shows a query to retrieve the employee names, department numbers, and annual salaries of
all employees based on the job title value of the SQL Developer substitution variable.

Oracle Database 11g: SQL Fundamentals | 2 - 31

Specifying Column Names,
Expressions, and Text

SELECT employee id, last name, job id/j&column name|
FROM employees

WHERE | &condition |

ORDER BY| &order_column|;

3

Enter, Substitution Yariable

Enter Substitution Variable

COLURMN_MAME: El

| salary] COMNDITION: Enter Substitution Variable [S__(l

|Salar\,f = 1SDDD|

| et % | | ORDER_COLUMN:
|40Kh_ |Iast_name|

QK C |
| &_| | concel |

Copyright © 2009, Oracle. All rights reserved.

Specifying Column Names, Expressions, and Text
You can use the substitution variables not only in the WHERE clause of a SQL statement, but also as
substitution for column names, expressions, or text.

Example:

The slide example displays the employee number, last name, job title, and any other column that is
specified by the user at run time, from the EMPLOYEES table. For each substitution variable in the
SELECT statement, you are prompted to enter a value, and then click OK to proceed.

If you do not enter a value for the substitution variable, you get an error when you execute the
preceding statement.

Note: A substitution variable can be used anywhere in the SELECT statement, except as the first
word entered at the command prompt.

Oracle Database 11g: SQL Fundamentals | 2 - 32

Using the Double-Ampersand
Substitution Variable

Use double ampersand (&&) if you want to reuse the variable
value without prompting the user each time:

SELECT employee id, last name, job id, |&&colu.mn_name|

FROM employees
ORDER BYl&colunm namel;

a

Enter, Substitution Yariable g]

COLLUMM_MARE:

| department _id |
| Ok | | Cancel |
B empLovero [LasT_meme (8 Jorip | DEPARTMENT D
1 200 Whalen AD_ASST 10
2 201 Hartstein MF_MAN 20
3 202 Fay hbi_REP 20

Copyright © 2009, Oracle. All rights reserved.

Using the Double-Ampersand Substitution Variable

You can use the double-ampersand (&&) substitution variable if you want to reuse the variable value
without prompting the user each time. The user sees the prompt for the value only once. In the
example in the slide, the user is asked to give the value for the variable, column name, only once.
The value that is supplied by the user (department id) is used for both display and ordering of
data. If you run the query again, you will not be prompted for the value of the variable.

SQL Developer stores the value that is supplied by using the DEFINE command; it uses it again

whenever you reference the variable name. After a user variable is in place, you need to use the
UNDEFINE command to delete it:

UNDEFINE column name

Oracle Database 11g: SQL Fundamentals | 2 - 33

Lesson Agenda

« Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
* Substitution variables
 DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 2 - 34

Using the DEFINE Command

 Use the DEFINE command to create and assign a value to
a variable.

e Use the UNDEFINE command to remove a variable.

DEFINElemployee_numl =| 200 |

SELECT employee id, lasf name, salary, department id
FROM employees v
WHERE employee id =| &employee num |;

UNDEFINE employee num

Copyright © 2009, Oracle. All rights reserved.

Using the DEFINE Command

The example shown creates a substitution variable for an employee number by using the DEFINE
command. At run time, this displays the employee number, name, salary, and department number for
that employee.

Because the variable is created using the SQL Developer DEFINE command, the user is not
prompted to enter a value for the employee number. Instead, the defined variable value is
automatically substituted in the SELECT statement.

The EMPLOYEE NUM substitution variable is present in the session until the user undefines it or
exits the SQL Developer session.

Oracle Database 11g: SQL Fundamentals| 2 -35

Using the VERIFY Command

Use the VERIFY command to toggle the display of the
substitution variable, both before and after SQL Developer
replaces substitution variables with values:

SET VERIFY ONl

SELECT employee id, last name, salary
FROM employees
WHERE employee id = &employee num;

EMPLOYEE_NUM: 4’ = E
|2m| | JELECT employee_id, last name, salary
FROM enployees
[ok || concer || |WHERE [employee id = 200 |
EMPLOYEE_ID LAST_NAME SALARY
200 Whalen 4400

1l rows selected

Copyright © 2009, Oracle. All rights reserved.

Using the VERIFY Command

To confirm the changes in the SQL statement, use the VERIFY command. Setting SET VERIFY ON

forces SQL Developer to display the text of a command after it replaces substitution variables with
values. To see the VERIFY output, you should use the Run Script (F5) icon in the SQL Worksheet.

SQL Developer displays the text of a command after it replaces substitution variables with values, in
the Script Output tab as shown in the slide.

The example in the slide displays the new value of the EMPLOYEE ID column in the SQL statement
followed by the output.
SQL*Plus System Variables

SQL*Plus uses various system variables that control the working environment. One of the variables
1s VERIFY. To obtain a complete list of all the system variables, you can issue the SHOW ALL

command on the SQL*Plus command prompt.

Oracle Database 11g: SQL Fundamentals | 2 - 36

Quiz

Which of the following are valid operators for the WHERE

clause?
1. >=
2. IS NULL
3. 1=
4. IS LIKE
5. IN BETWEEN
6. <>

Copyright © 2009, Oracle. All rights reserved.

Answer: 1,2, 3,6

Oracle Database 11g: SQL Fundamentals | 2 - 37

Summary

In this lesson, you should have learned how to:

* Use the WHERE clause to restrict rows of output:
— Use the comparison conditions
— Use the BETWEEN, IN, LIKE, and NULL operators
— Apply the logical AND, OR, and NOT operators

* Use the ORDER BY clause to sort rows of output:

SELECT *|{[DISTINCT] column|/expression [alias]l,...}
FROM table

[WHERE condition(s)]
[ORDER BY {column, expr, alias} [ASC|DESCI]|;

* Use ampersand substitution to restrict and sort output at
run time

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about restricting and sorting rows that are returned by the
SELECT statement. You should also have learned how to implement various operators and

conditions.

By using the substitution variables, you can add flexibility to your SQL statements. This enables the
queries to prompt for the filter condition for the rows during run time.

Oracle Database 11g: SQL Fundamentals | 2 - 38

Practice 2: Overview

This practice covers the following topics:

« Selecting data and changing the order of the rows
that are displayed

* Restricting rows by using the WHERE clause
« Sorting rows by using the ORDER BY clause

« Using substitution variables to add flexibility to your
SQL SELECT statements

Copyright © 2009, Oracle. All rights reserved.

Practice 2: Overview

In this practice, you build more reports, including statements that use the WHERE clause and the
ORDER BY clause. You make the SQL statements more reusable and generic by including the
ampersand substitution.

Oracle Database 11g: SQL Fundamentals | 2 -39

Practice 2

The HR department needs your assistance in creating some queries.
1. Because of budget issues, the HR department needs a report that displays the last name and
salary of employees who earn more than $12,000. Save your SQL statement as a file named
lab 02 01.sgl.Run your query.

LAST MAME SALARY
1 King 24000
2 Kochhar 17000
3 De Haan 17000
4 Hartstein 13000

2. Open a new SQL Worksheet. Create a report that displays the last name and department number
for employee number 176. Run the query.

LAST MAME DEP&RTMEMT ID
1 Tavylor a0

3. The HR department needs to find high-salary and low-salary employees. Modify
lab 02 01.sgl to display the last name and salary for any employee whose salary is not in
the range of $5,000 to $12,000. Save your SQL statement as 1ab_ 02 03 .sqgl.

LAST FMAME SALARY
1 Hing 24000
2 Kochhar 17000
3 De Haan 17000
4 Larertz 4200
5 Rajz 3500
B Davies 3100
7 Matos 2600
2 Yargas 2500
9 Whalen 4400
10 Hartstein 13000

Oracle Database 11g: SQL Fundamentals | 2 - 40

Practice 2 (continued)

4. Create a report to display the last name, job ID, and hire date for employees with the last names
of Matos and Taylor. Order the query in ascending order by the hire date.

LAST FAME JOB_ID |HIRE_DATE
1 Matos ST CLERK 15-M&R-93
2 Taylor Sa REP 24-MAR-93

5. Display the last name and department ID of all employees in departments 20 or 50 in ascending
alphabetical order by name.

LasT_mane (B DEPARTMENMT_ID
1 Davies a0
2 Fay 20
3 Hartstein 20
4 hatos S0
S Mourgos a0
B Rais a0
¥ Wargas S0

6. Modify 1ab 02 03.sqgl to display the last name and salary of employees who earn between
$5,000 and $12,000, and are in department 20 or 50. Label the columns Employee and
Monthly Salary, respectively. Resave 1ab 02 03.sqgl aslab 02 06.sgl. Run the
statement in 1ab 02 06.sqgl.

Employves honthly Salary
1 Fay 000
2 Mourgos Sa00

Oracle Database 11g: SQL Fundamentals | 2 - 41

Practice 2 (continued)

7. The HR department needs a report that displays the last name and hire date for all employees

10.

who were hired in 1994.

LAST MAME |HIRE_DATE
1 Higginz 07 -JUR-94
2 Gietz 07 -JUr-94

Create a report to display the last name and job title of all employees who do not have a

manager.

LAST MAME

JOB_|D

1 King

A0 _PRES

Create a report to display the last name, salary, and commission of all employees who earn
commissions. Sort data in descending order of salary and commissions.
Use the column’s numeric position in the ORDER BY clause.

LAST MAME

SALLRY

COMMISSION_PCT

1 Abkel
2 Zlotkey
3 Tavlor
4 Grant

11000
10500
SE00
TOao0

0.3
0z
0z
015

Members of the HR department want to have more flexibility with the queries that you are
writing. They would like a report that displays the last name and salary of employees who earn
more than an amount that the user specifies after a prompt. Save this query to a file named
lab 02 10.sqgl.Ifyouenter 12000 when prompted, the report displays the following

results:
LAST FMAME SALAEEJ
1 King 24000
2 Kochhar 17000
3 De Haan 17000
4 Hartstein 13000

Oracle Database 11g: SQL Fundamentals | 2 - 42

Practice 2 (continued)

11. The HR department wants to run reports based on a manager. Create a query that prompts the
user for a manager ID and generates the employee ID, last name, salary, and department for
that manager’s employees. The HR department wants the ability to sort the report on a selected
column. You can test the data with the following values:

manager id = 103, sorted by last name:

EMPLOYEE_ID LAST RAME SALARY DEPARTMENT _ID
104 Ernst E000 B0
2 107 Lorentz 4200 B0

manager id = 201, sorted by salary:

EMPLOYEE_ID LAST MAME SALARY DEPARTMENMT _ID
1 202 Fay 6000 20

manager id = 124, sorted by employee id:

EMPLOYEE_ID LAST_MAME SaLARY DEPARTMENT _ID
1 141 Rajs 3500 50
2 142 Davies 3100 50
3 143 Matas 2600 50
4 144 Vargas 2500 S0

Oracle Database 11g: SQL Fundamentals | 2 - 43

Practice 2 (continued)

If you have time, complete the following exercises:
12. Display all employee last names in which the third letter of the name is “a.”

LAST MAME
1 Grant

2 Wwhalen

13. Display the last names of all employees who have both an “a” and an *“e” in their last name.

LAST_MAME
1 Davies
2 De Haan
3 Hartstein
4 Whalen

If you want an extra challenge, complete the following exercises:
14. Display the last name, job, and salary for all employees whose jobs are either those of a sales
representative or of a stock clerk, and whose salaries are not equal to $2,500, $3,500, or $7,000.

LAST FAME JOB_ID SALARY
1 Abel S8 REP 11000
2 Taylor S8 REP 8500
3 Davies ST_CLERK 3100
4 Matos ST_CLERK 2600

15. Modify 1ab 02 06.sql to display the last name, salary, and commission for all employees
whose commission is 20%. Resave 1lab 02 06.sgl as lab_02_ 15.sqgl. Rerun the
statement in 1ab 02 15.sqgl.

Employes Morthly Salary | commISsION_PCT

1 Zlotkey 10500 nz
2 Tavylor ae00 0.2

Oracle Database 11g: SQL Fundamentals | 2 -44

Using Single-Row Functions to
Customize Output

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Describe various types of functions available in SQL

¢ Use character, number, and date functions in SELECT
statements

Copyright © 2009, Oracle. All rights reserved.

Objectives

Functions make the basic query block more powerful, and they are used to manipulate data values.
This is the first of two lessons that explore functions. It focuses on single-row character, number, and
date functions.

Oracle Database 11g: SQL Fundamentals| 3 -2

Lesson Agenda

« Single-row SQL functions
» Character functions
 Number functions

* Working with dates

» Date functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 3 -3

SQL Functions

Input Output
arg 1 Function performs
action
arg 2
J Result
B, value
(]
argn

Copyright © 2009, Oracle. All rights reserved.

SQL Functions

Functions are a very powerful feature of SQL. They can be used to do the following:
* Perform calculations on data
* Modify individual data items
* Manipulate output for groups of rows
» Format dates and numbers for display
« Convert column data types

SQL functions sometimes take arguments and always return a value.

Note: If you want to know whether a function is a SQL:2003 compliant function, refer to the Oracle

Compliance To Core SQL:2003 section in Oracle Database SQL Language Reference 11g, Release 1
(11.1).

Oracle Database 11g: SQL Fundamentals| 3 -4

Two Types of SQL Functions

Functions
N Slngle.-row . . Multlpl_e-row
functions functions
—_—
Return one resulit Return one result
per row per set of rows

Copyright © 2009, Oracle. All rights reserved.

Two Types of SQL Functions

There are two types of functions:
 Single-row functions
* Multiple-row functions

Single-Row Functions

These functions operate on single rows only and return one result per row. There are different types
of single-row functions. This lesson covers the following ones:

 Character

* Number

* Date

» Conversion

* General

Multiple-Row Functions

Functions can manipulate groups of rows to give one result per group of rows. These functions are
also known as group functions (covered in lesson 5 titled “Reporting Aggregated Data Using the
Group Functions™).

Note: For more information and a complete list of available functions and their syntax, see the topic,
Functions in Oracle Database SQL Language Reference 11g, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals| 3 -5

Single-Row Functions

Single-row functions:
* Manipulate data items
« Accept arguments and return one value
* Act on each row that is returned
* Return one result per row
* May modify the data type
« Can be nested
* Accept arguments that can be a column or an expression

function name [(argl, arg2,...)]

Copyright © 2009, Oracle. All rights reserved.

Single-Row Functions

Single-row functions are used to manipulate data items. They accept one or more arguments and
return one value for each row that is returned by the query. An argument can be one of the following:
» User-supplied constant
* Variable value
* Column name
» Expression

Features of single-row functions include:
» Acting on each row that is returned in the query
+ Returning one result per row
* Possibly returning a data value of a different type than the one that is referenced
» Possibly expecting one or more arguments
* Can be used in SELECT, WHERE, and ORDER BY clauses; can be nested

In the syntax:
function name is the name of the function
argl, arg2 is any argument to be used by the function. This can be
represented by a column name or expression.

Oracle Database 11g: SQL Fundamentals| 3 -6

Single-Row Functions

Character

Single-row
functions

Conversion Date

Copyright © 2009, Oracle. All rights reserved.

Single-Row Functions (continued)

This lesson covers the following single-row functions:
» Character functions: Accept character input and can return both character and number values
* Number functions: Accept numeric input and return numeric values
» Date functions: Operate on values of the DATE data type (All date functions return a value of
the DATE data type except the MONTHS BETWEEN function, which returns a number.)

The following single-row functions are discussed in the next lesson titled “Using Conversion
Functions and Conditional Expressions™:

* Conversion functions: Convert a value from one data type to another
* General functions:

- NVL

- NVL2

- NULLIF

- COALESCE

- CASE

- DECODE

Oracle Database 11g: SQL Fundamentals| 3 -7

Lesson Agenda

« Single-row SQL functions
» Character functions
 Number functions

* Working with dates

» Date functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 3-8

Character Functions

Character
functions

Case-conversion

Character-manipulation

functions functions
LOWER CONCAT
UPPER SUBSTR
INITCAP LENGTH
INSTR
LPAD | RPAD
TRIM
REPLACE

Copyright © 2009, Oracle. All rights reserved.

Character Functions

Single-row character functions accept character data as input and can return both character and
numeric values. Character functions can be divided into the following:
» Case-conversion functions

 Character-manipulation functions

Function

Purpose

LOWER (column[expression)

Converts alpha character values to lowercase

UPPER (column|[expression)

Converts alpha character values to uppercase

INITCAP (column|expression)

Converts alpha character values to uppercase for the first
letter of each word; all other letters in lowercase

CONCAT (columnl |expressionl,
column2 [expression2)

Concatenates the first character value to the second
character value; equivalent to concatenation operator (||)

,n])

SUBSTR (column|expression, m[

Returns specified characters from character value starting at
character position m, n characters long (If m is negative, the
count starts from the end of the character value. If n is

omitted, all characters to the end of the string are returned.)

Note: The functions discussed in this lesson are only some of the available functions.

Oracle Database 11g: SQL Fundamentals| 3 -9

Character Functions (continued)

Function Purpose
LENGTH (column|expression) Returns the number of characters in the expression
INSTR (column|expression, Returns the numeric position of a named string.

‘string’, [,m], [n]) Optionally, you can provide a position m to start

searching, and the occurrence # of the string. m and n
default to 1, meaning start the search at the beginning
of the string and report the first occurrence.

LPAD (column|expression, n, | Returns an expression left-padded to length of n

'string') , characters with a character expression.
RPAD (closltlfﬁj;};p Tession, .| Returns an expression right-padded to length of n

characters with a character expression.

TRIM(leading[trailing|both, | Enables you to trim leading or trailing characters (or

trim character FROM both) from a character string. If trim_character or

trim source) . . . - .,
- trim_source 1s a character literal, you must enclose it in

single quotation marks.

This is a feature that is available in Oracle8i and later

versions.

REPLACE (text, Searches a text expression for a character string and, if

search string, found, replaces it with a specified replacement string
replacement string)

Note: Some of the functions that are fully or partially SQL:2003 compliant are:
UPPER

LOWER
TRIM

LENGTH
SUBSTR
INSTR

Refer to the Oracle Compliance To Core SQL:2003 section in Oracle Database SOQL Language
Reference 11g, Release 1 (11.1) for more information.

Oracle Database 11g: SQL Fundamentals| 3 -10

Case-Conversion Functions

These functions convert the case for character strings:

Function Result

LOWER ('SQL Course') sql course
UPPER ('SQL Course') SQL COURSE
INITCAP ('SQL Course') Sgl Course

Copyright © 2009, Oracle. All rights reserved.

Case-Conversion Functions

LOWER, UPPER, and INITCAP are the three case-conversion functions.
« LOWER: Converts mixed-case or uppercase character strings to lowercase
« UPPER: Converts mixed-case or lowercase character strings to uppercase
« INITCAP: Converts the first letter of each word to uppercase and the remaining letters to

lowercase
SELECT 'The job id for '||UPPER(last name) ||' is '
| | LOWER (job_id) AS "EMPLOYEE DETAILS"
FROM employees;

EMPLOYEE DETAILS
1 The joh iu:?fgr ABEL i= sa_rep'
2 The job id for DAYIES is st_clerk
3 The jok id for DE HAAMN iz ad_wvp

19 The jok id for WHALEM iz ad_asst
20 The job id for ZLOTKEY iz s=a_man

Oracle Database 11g: SQL Fundamentals | 3 - 11

Using Case-Conversion Functions

Display the employee number, name, and department number
for employee Higgins:

SELECT employee id, last name, department id
FROM employees
WHERE last name = 'higgins';

|D rows selected|

SELECT employee id, last name, department id
FROM employees
WHERE |LOWER(last name) = 'higgins'

~e

B empLoveeD |B LasT vane [DEPARTMENT D
1 205 Higgins 110

Copyright © 2009, Oracle. All rights reserved.

Using Case-Conversion Functions

The slide example displays the employee number, name, and department number of employee
Higgins.

The WHERE clause of the first SQL statement specifies the employee name as higgins. Because all
the data in the EMPLOYEES table is stored in proper case, the name higgins does not find a match
in the table, and no rows are selected.

The WHERE clause of the second SQL statement specifies that the employee name in the
EMPLOYEES table is compared to higgins, converting the LAST NAME column to lowercase for
comparison purposes. Because both names are now lowercase, a match is found and one row is
selected. The WHERE clause can be rewritten in the following manner to produce the same result:

...WHERE last name = 'Higgins'
The name in the output appears as it was stored in the database. To display the name in uppercase,
use the UPPER function in the SELECT statement.

SELECT employee id, UPPER(last name), department id

FROM employees
WHERE INITCAP (last name) = 'Higgins';

Oracle Database 11g: SQL Fundamentals| 3 -12

Character-Manipulation Functions

These functions manipulate character strings:

Function Result

CONCAT ('Hello', 'World') HelloWorld
SUBSTR ('HelloWorld',1,5) Hello

LENGTH ('HelloWorld"') 10

INSTR ('HelloWorld', 'W') 6

LPAD (salary, 10, '*") **A*x%24000
RPAD (salary, 10, '=*!') 24:00Q = &
REPLACE BLACK and BLUE
('JACK and JUE','J','BL')

TRIM('H' FROM 'HelloWorld') elloWorld

Copyright © 2009, Oracle. All rights reserved.

Character-Manipulation Functions
CONCAT, SUBSTR, LENGTH, INSTR, LPAD, RPAD, and TRIM are the character-manipulation
functions that are covered in this lesson.
« CONCAT: Joins values together (You are limited to using two parameters with CONCAT.)
« SUBSTR: Extracts a string of determined length
o LENGTH: Shows the length of a string as a numeric value
« INSTR: Finds the numeric position of a named character
« LPAD: Returns an expression left-padded to the length of n characters with a character
expression
« RPAD: Returns an expression right-padded to the length of n characters with a character
expression
o TRIM: Trims leading or trailing characters (or both) from a character string (If
trim characteror trim source is a character literal, you must enclose it within single
quotation marks.)

Note: You can use functions such as UPPER and LOWER with ampersand substitution. For example,
use UPPER ('&job_title')so that the user does not have to enter the job title in a specific case.

Oracle Database 11g: SQL Fundamentals| 3 -13

Using the Character-Manipulation Functions

@

SELECT employee id, |CONCAT (first name, last name) NAME,
job_id, [LENGTH (last_name)s 2

| INSTR (1ast_name, 'a') "Contains 'a'?" | 3
FROM employees
WHERE SUBSTR(jOb_id, 4) = 'REP';
B emrLovee o|l mane |E J0B0 (B LeneTHLAST Mave B contains a7
1 174|Ellensbel Sa_REP 4 0
2 176 JonathonTaylor] 54 _REP = 2
3 178 KimberelyGrant) =4 _REP 5 3
4 202|PatFay hks_REP 3 2

Copyright © 2009, Oracle. All rights reserved.

Using the Character-Manipulation Functions

The slide example displays employee first names and last names joined together, the length of the
employee last name, and the numeric position of the letter “a” in the employee last name for all
employees who have the string, REP, contained in the job ID starting at the fourth position of the

job ID.
Example:

Modify the SQL statement in the slide to display the data for those employees whose last names end

with the letter “n.”
SELECT employee id, CONCAT (first name, last name) NAME,

LENGTH (last name), INSTR(last name, 'a') "Contains 'a'?"
FROM employees
WHERE SUBSTR (last name, -1, 1) = 'n';
EMPLOYEE ID | mamE LENGTHLAST MamE) (B cortains ‘a7
1 102 LexDe Haan T S
2 200 Jenniferhalen o]]
3 201 MichaelHartstein g 2

Oracle Database 11g: SQL Fundamentals | 3 - 14

Lesson Agenda

« Single-row SQL functions
» Character functions

* Number functions

* Working with dates

» Date Functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 3 -15

Number Functions

* ROUND: Rounds value to a specified decimal
* TRUNC: Truncates value to a specified decimal
» MOD: Returns remainder of division

Function Result

ROUND (45.926, 2) 45.93
TRUNC (45.926, 2) 45.92
MOD (1600, 300) 100

Copyright © 2009, Oracle. All rights reserved.

Number Functions

Number functions accept numeric input and return numeric values. This section describes some of
the number functions.

Function Purpose

ROUND (column|expression, n) | Rounds the column, expression, or value to n decimal
places or, if nn is omitted, no decimal places (If nn is
negative, numbers to the left of decimal point are rounded.)
TRUNC (column|expression, n) | Truncates the column, expression, or value to n decimal
places or, if nn is omitted, n defaults to zero

MOD (m, n) Returns the remainder of m divided by n

Note: This list contains only some of the available number functions.

For more information, see the section on Numeric Functions in Oracle Database SOQL Language
Reference 11g, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals| 3 -16

Using the ROUND Function

© @

y
SELECT| ROUND (45.923, 2)|,/ ROUND (45.923,0), O
3

ROUND (45.923, -1) [«
FROM DUAL;

ROUND(45.923,2) §8 ROUND(45.923,0) 2 ROUND[45.923,-1)|
1 435492

DUAL is a dummy table that you can use to view results
from functions and calculations.

Copyright © 2009, Oracle. All rights reserved.

Using the ROUND Function

The ROUND function rounds the column, expression, or value to n decimal places. If the second
argument is 0 or is missing, the value is rounded to zero decimal places. If the second argument is 2,
the value is rounded to two decimal places. Conversely, if the second argument is —2, the value is
rounded to two decimal places to the left (rounded to the nearest unit of 100).

The ROUND function can also be used with date functions. You will see examples later in this lesson.
DUAL Table
The DUAL table is owned by the user SYS and can be accessed by all users. It contains one column,

DUMMY, and one row with the value X. The DUAL table is useful when you want to return a value
only once (for example, the value of a constant, pseudocolumn, or expression that is not derived from
a table with user data). The DUAL table is generally used for completeness of the SELECT clause
syntax, because both SELECT and FROM clauses are mandatory, and several calculations do not need
to select from the actual tables.

Oracle Database 11g: SQL Fundamentals| 3 -17

Using the TRUNC Function

© @

v
SELECT| TRUNC (45.923, 2)|,/ TRUNC (45.923)|, <::)
3

TRUNC (45.923, -1) |
FROM DUAL;

TRUMC45 523,2) |E| TRURCE4S 22y I TRUNC4S 52341
1 4592 | 45 40

® ® O

Copyright © 2009, Oracle. All rights reserved.

Using the TRUNC Function

The TRUNC function truncates the column, expression, or value to » decimal places.

The TRUNC function works with arguments similar to those of the ROUND function. If the second
argument is 0 or is missing, the value is truncated to zero decimal places. If the second argument is 2,
the value is truncated to two decimal places. Conversely, if the second argument is —2, the value is
truncated to two decimal places to the left. If the second argument is —1, the value is truncated to one
decimal place to the left.

Like the ROUND function, the TRUNC function can be used with date functions.

Oracle Database 11g: SQL Fundamentals| 3 -18

Using the MOD Function

For all employees with the job title of Sales Representative,
calculate the remainder of the salary after it is divided by 5,000.

SELECT last name, salary,|MOD(salary, 5000)
FROM employees
WHERE job id = 'SA REP';

LAST_NAME| e [MOD[SALAR‘(,SDDD)”'

1 Ahel 11000 1000
2 Taylor SE00 3600
3 rant Foo0 2000

Copyright © 2009, Oracle. All rights reserved.

Using the MOD Function

The MOD function finds the remainder of the first argument divided by the second argument. The
slide example calculates the remainder of the salary after dividing it by 5,000 for all employees
whose job ID is SA_ REP.

Note: The MOD function is often used to determine whether a value is odd or even.

Oracle Database 11g: SQL Fundamentals| 3 -19

Lesson Agenda

« Single-row SQL functions
» Character functions
 Number functions

* Working with dates

» Date functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 3 -20

Working with Dates

 The Oracle database stores dates in an internal numeric
format: century, year, month, day, hours, minutes, and
seconds.

« The default date display format is DD-MON-RR.

— Enables you to store 21st-century dates in the 20th century
by specifying only the last two digits of the year

— Enables you to store 20th-century dates in the
21st century in the same way

SELECT last name, | hi re_datel

FROM employees
WHERE hire date < '0l-FEB-88';

LAST_MAME HIRE_DATE|
1 King 17-JUR-57
2 VWhalen 17-2EP-87

Copyright © 2009, Oracle. All rights reserved.

Working with Dates

The Oracle database stores dates in an internal numeric format, representing the century, year,
month, day, hours, minutes, and seconds.

The default display and input format for any date is DD-MON-RR. Valid Oracle dates are between
January 1, 4712 B.C., and December 31, 9999 A.D.

In the example in the slide, the HIRE DATE column output is displayed in the default format DD-

MON-RR. However, dates are not stored in the database in this format. All the components of the
date and time are stored. So, although a HIRE DATE such as 17-JUN-87 is displayed as day, month,

and year, there is also time and century information associated with the date. The complete data
might be June 17, 1987, 5:10:43 PM.

Oracle Database 11g: SQL Fundamentals | 3 - 21

RR Date Format

Current Year Specified Date RR Format YY Format
1995 27-0CT-95 1995 1995
1995 27-0CT-17 2017 1917
2001 27-0CT-17 2017 2017
2001 27-0OCT-95 1995 2095
If the specified two-digit year is:
0-49 50-99
If two digits The return date is in | The return date is in
of the 0-49 | the current century | the century before
current the current one
year are: The return date is in | The return date is in
50-99 | the century after the current century
the current one

Copyright © 2009, Oracle. All rights reserved.

RR Date Format

The RR date format is similar to the YY element, but you can use it to specify different centuries. Use
the RR date format element instead of YY so that the century of the return value varies according to
the specified two-digit year and the last two digits of the current year. The table in the slide
summarizes the behavior of the RR element.

Current Year Given Date Interpreted (RR) Interpreted (YY)
1994 27-OCT-95 1995 1995
1994 27-OCT-17 2017 1917
2001 27-OCT-17 2017 2017

Oracle Database 11g: SQL Fundamentals | 3 - 22

RR Date Format (continued)
This data is stored internally as follows:
CENTURY YEAR MONTH DAY HOUR MINUTE SECOND
19 87 06 17 17 10 43
Centuries and the Year 2000

When a record with a date column is inserted into a table, the century information is picked up from
the SYSDATE function. However, when the date column is displayed on the screen, the century
component is not displayed (by default).

The DATE data type uses 2 bytes for the year information, one for century and one for year. The
century value is always included, whether or not it is specified or displayed. In this case, RR
determines the default value for century on INSERT.

Oracle Database 11g: SQL Fundamentals | 3 -23

Using the SYSDATE Function

SYSDATE is a function that returns:

e Date
e Time

SELECT sysdate
FROM dual;

SYSDATE

1 31-MaY-07

Copyright © 2009, Oracle. All rights reserved.

Using the SYSDATE Function

SYSDATE is a date function that returns the current database server date and time. You can use
SYSDATE just as you would use any other column name. For example, you can display the current
date by selecting SYSDATE from a table. It is customary to select SYSDATE from a dummy table
called DUAL.

Note: SYSDATE returns the current date and time set for the operating system on which the database
resides. Therefore, if you are in a place in Australia and connected to a remote database in a location
in the United States (US), sysdate function will return the US date and time. In that case, you can
use the CURRENT DATE function that returns the current date in the session time zone.

The CURRENT DATE function and other related time zone functions are discussed in detail in the
course titled Oracle Database 11g: SQL Fundamentals I1.

Oracle Database 11g: SQL Fundamentals | 3 - 24

Arithmetic with Dates

 Add or subtract a number to or from a date for a resultant
date value.

« Subtract two dates to find the number of days between
those dates.

* Add hours to a date by dividing the number of hours by 24.

Copyright © 2009, Oracle. All rights reserved.

Arithmetic with Dates

Because the database stores dates as numbers, you can perform calculations using arithmetic
operators such as addition and subtraction. You can add and subtract number constants as well as
dates.

You can perform the following operations:

Operation Result Description

date + number Date Adds a number of days to a date

date — number Date Subtracts a number of days from a date
date — date Number of days | Subtracts one date from another

date + number/24 Date Adds a number of hours to a date

Oracle Database 11g: SQL Fundamentals | 3 - 25

Using Arithmetic Operators
with Dates

SELECT last name, |(SYSDATE-hire_date)/7 AS WEEKSl

FROM employees
WHERE department id = 90;

LasT_nave| B wEEks
1 King 1041 168239057 301 567301 567301 567301587302
2 Kochhar 323 125351 344444444444444444444444444444
3 De Haan 750 165230057301 557301 557301 557301587302

Copyright © 2009, Oracle. All rights reserved.

Using Arithmetic Operators with Dates

The example in the slide displays the last name and the number of weeks employed for all employees
in department 90. It subtracts the date on which the employee was hired from the current date
(SYSDATE) and divides the result by 7 to calculate the number of weeks that a worker has been

employed.

Note: SYSDATE is a SQL function that returns the current date and time. Your results may differ
depending on the date and time set for the operating system of your local database when you run the
SQL query.

If a more current date is subtracted from an older date, the difference is a negative number.

Oracle Database 11g: SQL Fundamentals | 3 - 26

Lesson Agenda

« Single-row SQL functions
» Character functions
 Number functions

* Working with dates

« Date functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 3 - 27

Date-Manipulation Functions

Function Result

MONTHS BETWEEN Number of months between two dates
ADD MONTHS Add calendar months to date

NEXT DAY Next day of the date specified

LAST DAY Last day of the month

ROUND Round date

TRUNC Truncate date

Copyright © 2009, Oracle. All rights reserved.

Date-Manipulation Functions

Date functions operate on Oracle dates. All date functions return a value of the DATE data type
except MONTHS BETWEEN, which returns a numeric value.

« MONTHS BETWEEN (datel, date2): Finds the number of months between datel and
date2. The result can be positive or negative. If date1l is later than date2, the result is
positive; if datel is earlier than date2, the result is negative. The noninteger part of the result
represents a portion of the month.

« ADD MONTHS (date, n):Adds nnumber of calendar months to date. The value of n must
be an integer and can be negative.

« NEXT DAY (date, 'char'): Finds the date of the next specified day of the week

('char') following date. The value of char may be a number representing a day or a
character string.

« LAST DAY (date): Finds the date of the last day of the month that contains date

The above list is a subset of the available date functions. ROUND and TRUNC number functions can
also be used to manipulate the date values as shown below:

« ROUND (datel[, 'fmt']): Returns date rounded to the unit that is specified by the format
model £mt. If the format model fint is omitted, date is rounded to the nearest day.

o TRUNC (datel, 'fmt']):Returns date with the time portion of the day truncated to the
unit that is specified by the format model £mt. If the format model £mt is omitted, date is
truncated to the nearest day.

The format models are covered in detail in the next lesson titled “Using Conversion Functions and
Conditional Expressions.”

Oracle Database 11g: SQL Fundamentals | 3 - 28

Using Date Functions

Function Result

MONTHS BETWEEN 19.6774194
('01l-SEP-95','11-JAN-94")

ADD MONTHS (‘'31-JAN-96',1) ‘29-FEB-96'
NEXT DAY ('01l-SEP-95', 'FRIDAY') '08-SEP-95"
LAST DAY ('01-FEB-95") '28-FEB-95'"

Copyright © 2009, Oracle. All rights reserved.

Using Date Functions

In the slide example, the ADD MONTHS function adds one month to the supplied date value, “31-
JAN-96” and returns “29-FEB-96.” The function recognizes the year 1996 as the leap year and hence
returns the last day of the February month. If you change the input date value to “31-JAN-95,” the
function returns “28-FEB-95.”

For example, display the employee number, hire date, number of months employed, six-month
review date, first Friday after hire date, and the last day of the hire month for all employees who have
been employed for fewer than 100 months.
SELECT employee id, hire date,
MONTHS BETWEEN (SYSDATE, hire date) TENURE,
ADD MONTHS (hire date, 6) REVIEW,
NEXT DAY (hire date, 'FRIDAY'), LAST DAY (hire date)
FROM employees
WHERE MONTHS BETWEEN (SYSDATE, hire date) < 100;

EMPLCYEE_ID |HIRE_DATE | TEMLRE |REVIEW |NE}(T_DAY(HIRE_DATE,'FRIDAY'J |LAST_DAY(HIRE_DATE)
1 124 16-MOY-99 81 1099600, 1 6-haY 00 19-NOY-29 S0-MOY-00
2 143 28-JAN-00 66 GA0S052.. 29-JUL-00 04-FES-00 1 -Jp-00
3 176 24-MAY-99 05 5518955, 24-MOV-09 25-MaY-99 WA
4 99999 07-JUN-33 95 4002526, 07-DEC-99 11 -JUN-33 a0-JUIN-33
5 113 M-JUN-07 025824335, 11-DEC-07 15-JUN-07 S0-JUN-07

Oracle Database 11g: SQL Fundamentals | 3 -29

Using ROUND and TRUNC Functions with Dates

Assume SYSDATE = '25-JUL-03"':

Function Result

ROUND (SYSDATE, 'MONTH') 01-AUG-03
ROUND (SYSDATE , 'YEAR') 01-JAN-04
TRUNC (SYSDATE , 'MONTH') 01-JUL-03
TRUNC (SYSDATE , 'YEAR') 01-JAN-03

Copyright © 2009, Oracle. All rights reserved.

Using ROUND and TRUNC Functions with Dates

The ROUND and TRUNC functions can be used for number and date values. When used with dates,
these functions round or truncate to the specified format model. Therefore, you can round dates to the
nearest year or month. If the format model is month, dates 1-15 result in the first day of the current
month. Dates 16-31 result in the first day of the next month. If the format model is year, months 1-6
result in January 1 of the current year. Months 7-12 result in January 1 of the next year.

Example:

Compare the hire dates for all employees who started in 1997. Display the employee number, hire
date, and starting month using the ROUND and TRUNC functions.

SELECT employee id, hire date,

ROUND (hire date, 'MONTH'), TRUNC (hire date, 'MONTH')

FROM employees

WHERE hire date LIKE '%97';

EMPLOYEE_ID |HIRE_DATE |ROUNDIHIRE _DATE MOMTHY) | TRUNCIHIRE_DATE MONTH"
1 142 29.JAN-97 01-FEB-97 01 -JAK-37
2 202 17-AU5-97 01-SEP-97 01 -AG-97

Oracle Database 11g: SQL Fundamentals| 3 -30

Quiz

Which of the following statements are true about single-row
functions?

1. Manipulate data items

Accept arguments and return one value per argument
Act on each row that is returned

Return one result per set of rows

May not modify the data type

Can be nested

Accept arguments that can be a column or an expression

N o Ok wN

Copyright © 2009, Oracle. All rights reserved.

Answer: 1, 3,6,7

Oracle Database 11g: SQL Fundamentals | 3 - 31

Summary

In this lesson, you should have learned how to:
« Perform calculations on data using functions
* Modify individual data items using functions

Copyright © 2009, Oracle. All rights reserved.

Summary

Single-row functions can be nested to any level. Single-row functions can manipulate the following:
* Character data: LOWER, UPPER, INITCAP, CONCAT, SUBSTR, INSTR, LENGTH
¢ Number data: ROUND, TRUNC, MOD
» Date values: SYSDATE, MONTHS BETWEEN, ADD MONTHS, NEXT DAY, LAST DAY

Remember the following:
» Date values can also use arithmetic operators.
* ROUND and TRUNC functions can also be used with date values.

SYSDATE and DUAL

SYSDATE is a date function that returns the current date and time. It is customary to select
SYSDATE from a dummy table called DUAL.

Oracle Database 11g: SQL Fundamentals | 3 - 32

Practice 3: Overview

This practice covers the following topics:

« Writing a query that displays the current date

« Creating queries that require the use of numeric,
character, and date functions

« Performing calculations of years and months of service for
an employee

Copyright © 2009, Oracle. All rights reserved.

Practice 3: Overview

This practice provides a variety of exercises using different functions that are available for character,
number, and date data types.

Oracle Database 11g: SQL Fundamentals| 3 -33

Practice 3
Part 1
1. Write a query to display the system date. Label the column as Date.

Note: If your database is remotely located in a different time zone, the output will be the date
for the operating system on which the database resides.

Crate
1 31-May-07

2. The HR department needs a report to display the employee number, last name, salary, and
salary increased by 15.5% (expressed as a whole number) for each employee. Label the column
New Salary. Save your SQL statement in a file named 1lab_03 02.sqgl.

3. Run your query in the 1ab 03 02.sqgl file.

emPLOYEE ID | LasT mMame (Bl saLsry (B Mew Salary

1 100 King 24000 27720
2 101 Kochhar 17000 19635
3 102 De Haan 17000 19635
4 103 Hunald 9000 10395
5 104 Ernat 5000 930
5 107 Lorentz 4200 4851
v 124 Mourgos Sa00 G639
5 141 Rajs 3500 4043
g 142 Davies 3100 3581
10 143 Matos 2600 3003
19 205 Higgins 12000 13860
20 206 Gietz 5300 9587

4. Modify your query 1ab 03 02.s=qgl to add a column that subtracts the old salary from the
new salary. Label the column Increase. Save the contents of the file as 1abb 03 04 .sqgl.

Run the revised query.

EMPLOVEEID (B LasT name (B saLsry |B new salary B increase

1 100 King 24000 27720 3720

2 101 Kochhar 17000 19635 2635

3 102 De Haan 17000 19635 2635

4 103 Hunald 9000 10395 1395

5 104 Ernat E000 E930 30

20 206 Gietz 8300 9587 1267

Oracle Database 11g: SQL Fundamentals | 3 - 34

Practice 3 (continued)

5. Write a query that displays the last name (with the first letter in uppercase and all the other
letters in lowercase) and the length of the last name for all employees whose name starts with
the letters “J,” “A,” or “M.” Give each column an appropriate label. Sort the results by the
employees’ last names.

Name Length

1 Abel 4
2 Matos o
3 Mourgos 7

Rewrite the query so that the user is prompted to enter a letter that the last name starts with. For
example, if the user enters “H” (capitalized) when prompted for a letter, then the output should
show all employees whose last name starts with the letter “H.”

Name Lencth

1 Hart=stein 9
2 Higginz v
3 Hunold =]

Modify the query such that the case of the entered letter does not affect the output. The entered
letter must be capitalized before being processed by the SELECT query.

=

Enter Substitution ¥Yariable

START_LETTER:

Name! Length

1 Hartztein 5|
2 Higginz v
= Hunald B

Oracle Database 11g: SQL Fundamentals| 3 -35

Practice 3 (continued)

6. The HR department wants to find the duration of employment for each employee. For each
employee, display the last name and calculate the number of months between today and the
date on which the employee was hired. Label the column as MONTHS WORKED. Order your
results by the number of months employed. Round the number of months up to the closest
whole number.

Note: Because this query depends on the date when it was executed, the values in the
MONTHS WORKED column will differ for you.

LasT MAME (B MONTHS WORKED
1 Zlaotkey et
2 Mourgos a0
3 Grant a5
4 Larertz 100
S Vargas 107
B Tavlor 110
7 Matos 111
3 Fay 117
9 Davies 124
10 Abkel 133
11 Hartstein 135
12 Rajs 1349
13 Higgins 156
14 Gietz 136
15 De Haan 173
16 Ernst 182
17 Hunold 209
18 Kochhar 212
19 Whalen 236
20 King 239

Oracle Database 11g: SQL Fundamentals | 3 - 36

Practice 3 (continued)

If you have time, complete the following exercises:

7. Create a query to display the last name and salary for all employees. Format the salary to be 15
characters long, left-padded with the § symbol. Label the column as SALARY.

LasT mame | saLary
1 King FFRFFETTTF 24000
2 Kochhar FEEEFEFFEF F0O0
20 Gietz $3555F55558300

8. Create a query that displays the first eight characters of the employees’ last names and indicates
the amounts of their salaries with asterisks. Each asterisk signifies a thousand dollars. Sort the
data in descending order of salary. Label the column as
EMPLOYEES AND THEIR SALARIES.

EMPLOYEES _AMD_THEIR_SALARIES
1 King
2 anhhar bR+
3 DE Haan Et St S E 444
4 Har-tStEI kikEtiibiiiiE

5 HIQQII’IE RXERREREEREE

19 Matos **
20 Vargas *

9. Create a query to display the last name and the number of weeks employed for all employees in
department 90. Label the number of weeks column as TENURE. Truncate the number of weeks
value to 0 decimal places. Show the records in descending order of the employee’s tenure.
Note: The TENURE value will differ as it depends on the date on which you run the query.

LAST_anjE TENLEEJT

1 King 1041
2 Hochhar 23
3 De Haan ran

Oracle Database 11g: SQL Fundamentals | 3 - 37

Using Conversion Functions and
Conditional Expressions

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

» Describe various types of conversion functions that are
available in SQL

* Use the TO CHAR, TO NUMBER, and TO DATE conversion
functions

* Apply conditional expressions in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.

Objectives

This lesson focuses on functions that convert data from one type to another (for example, conversion
from character data to numeric data) and discusses the conditional expressions in SQL SELECT

statements.

Oracle Database 11g: SQL Fundamentals | 4 -2

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
« Conditional expressions:

— CASE

— DECODE

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 4-3

Conversion Functions

Data type
conversion

Implicit data type Explicit data type
conversion conversion

Copyright © 2009, Oracle. All rights reserved.

Conversion Functions

In addition to Oracle data types, columns of tables in an Oracle database can be defined by using the
American National Standards Institute (ANSI), DB2, and SQL/DS data types. However, the Oracle
server internally converts such data types to Oracle data types.

In some cases, the Oracle server receives data of one data type where it expects data of a different
data type. When this happens, the Oracle server can automatically convert the data to the expected
data type. This data type conversion can be done implicitly by the Oracle server or explicitly by the
user.

Implicit data type conversions work according to the rules explained in the next two slides.

Explicit data type conversions are done by using the conversion functions. Conversion functions
convert a value from one data type to another. Generally, the form of the function names follows the
convention data type TO data type. The first data type is the input data type and the second

data type is the output.

Note: Although implicit data type conversion is available, it is recommended that you do the explicit
data type conversion to ensure the reliability of your SQL statements.

Oracle Database 11g: SQL Fundamentals| 4 -4

Implicit Data Type Conversion

In expressions, the Oracle server can automatically convert the

following:
From To
VARCHAR2 or CHAR NUMBER
VARCHAR2 or CHAR DATE

Copyright © 2009, Oracle. All rights reserved.

Implicit Data Type Conversion

Oracle server can automatically perform data type conversion in an expression. For example, the
expression hire date > '01-JAN-90' results in the implicit conversion from the string ' 01 -
JAN-90"' to a date. Therefore, a VARCHAR?2 or CHAR value can be implicitly converted to a number
or date data type in an expression.

Oracle Database 11g: SQL Fundamentals| 4 -5

Implicit Data Type Conversion

For expression evaluation, the Oracle server can automatically
convert the following:

From To
NUMBER VARCHAR2 or CHAR
DATE VARCHAR2 or CHAR

Copyright © 2009, Oracle. All rights reserved.

Implicit Data Type Conversion (continued)

In general, the Oracle server uses the rule for expressions when a data type conversion is needed. For
example, the expression grade = 2 results in the implicit conversion of the number 20000 to the

string “2” because grade is a CHAR (2) column.
Note: CHAR to NUMBER conversions succeed only if the character string represents a valid number.

Oracle Database 11g: SQL Fundamentals| 4 -6

Explicit Data Type Conversion

TO NUMBER TO DATE
NUMBER CHARACTER DATE
TO CHAR TO CHAR

Copyright © 2009, Oracle. All rights reserved.

Explicit Data Type Conversion

SQL provides three functions to convert a value from one data type to another:

Function Purpose

TO CHAR (number|date, [fmt],

Converts a number or date value to a VARCHAR?2
[nlsparams])

character string with the format model £mt

Number conversion: The nlsparams
parameter specifies the following characters,
which are returned by number format elements:

e Decimal character

e Group separator

e Local currency symbol

e International currency symbol

If nlsparams or any other parameter is omitted,
this function uses the default parameter values for
the session.

Oracle Database 11g: SQL Fundamentals| 4 -7

Explicit Data Type Conversion

TO NUMBER TO DATE
NUMBER CHARACTER DATE
TO CHAR TO CHAR

Copyright © 2009, Oracle. All rights reserved.

Explicit Data Type Conversion (continued)

Function Purpose

TO CHAR (number|date, [fmt],
[nlsparams])

Date conversion: The nlsparams parameter specifies
the language in which the month and day names, and
abbreviations are returned. If this parameter is omitted,
this function uses the default date languages for the
session.

TO NUMBER (char, [fmt],

Converts a character string containing digits to a number
[nlsparams])

in the format specified by the optional format model £mt.

The nlsparams parameter has the same purpose in this
function as in the TO CHAR function for number
conversion.

TO DATE (char, [fmt] , [nlspara

ns]) Converts a character string representing a date to a date

value according to the £mt that is specified. If £fmt is
omitted, the format is DD-MON-YY.

The nlsparams parameter has the same purpose in this
function as in the TO_CHAR function for date conversion.

Oracle Database 11g: SQL Fundamentals| 4 -8

Explicit Data Type Conversion (continued)

Note: The list of functions mentioned in this lesson includes only some of the available conversion
functions.

For more information, see the section on Conversion Functions in Oracle Database SQL Language
Reference 11g, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals| 4-9

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
« Conditional expressions:

— CASE

— DECODE

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 4-10

Using the To CHAR Function with Dates

TO_CHAR(date, 'format model')

The format model:
« Must be enclosed with single quotation marks
* Is case-sensitive
« Caninclude any valid date format element

 Has an fm element to remove padded blanks or suppress
leading zeros

* |s separated from the date value by a comma

Copyright © 2009, Oracle. All rights reserved.

Using the TO CHAR Function with Dates

TO CHAR converts a datetime data type to a value of VARCHAR?2 data type in the format specified
by the format model. A format model is a character literal that describes the format of datetime
stored in a character string. For example, the datetime format model for the string ' 11 -Nov-
1999'is 'DD-Mon-YYYY'. You can use the TO CHAR function to convert a date from its default

format to the one that you specify.

Guidelines
» The format model must be enclosed with single quotation marks and is case-sensitive.
* The format model can include any valid date format element. But be sure to separate the date
value from the format model with a comma.

* The names of days and months in the output are automatically padded with blanks.

» To remove padded blanks or to suppress leading zeros, use the fill mode fm element.
SELECT employee id, TO_CHAR (hire date, 'MM/YY') Month Hired
FROM employees
WHERE last name = 'Higgins';

EMPLOYEE ID (B MONTH_HIRED ||
1 205 0694 |

Oracle Database 11g: SQL Fundamentals | 4 - 11

Elements of the Date Format Model

Element Result

YYYY Full year in numbers

YEAR Year spelled out (in English)

MM Two-digit value for the month

MONTH Full name of the month

MON Three-letter abbreviation of the month

DY Three-letter abbreviation of the day of the week
DAY Full name of the day of the week

DD Numeric day of the month

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 4 -12

Sample Format Elements of Valid Date Formats

Element Description

SCC or CC Century; server prefixes B.C. date with -

Yearsindates YYYY or SYYYY | Year; server prefixes B.C. date with -

YYYorYYorY Last three, two, or one digit of the year

Y,YYY Year with comma in this position

IYYY,IYY,IY, I Four-, three-, two-, or one-digit year based on the ISO
standard

SYEAR or YEAR Year spelled out; server prefixes B.C. date with -

BC or AD Indicates B.C. or A.D. year

B.C. or A.D. Indicates B.C. or A.D. year using periods

Q Quarter of year

MM Month: two-digit value

MONTH Name of the month padded with blanks to a length of nine
characters

MON Name of the month, three-letter abbreviation

RM Roman numeral month

WW or W Week of the year or month

DDD or DD or D Day of the year, month, or week

DAY Name of the day padded with blanks to a length of nine
characters

DY Name of the day; three-letter abbreviation

J Julian day; the number of days since December 31, 4713
B.C.

Iw Weeks in the year from ISO standard (1 to 53)

Oracle Database 11g: SQL Fundamentals| 4 -13

Elements of the Date Format Model

» Time elements format the time portion of the date:

HH24 :MI:SS AM 15:45:32 PM

« Add character strings by enclosing them with double
quotation marks:

DD "of" MONTH 12 of OCTOBER

* Number suffixes spell out numbers:

ddspth fourteenth

Copyright © 2009, Oracle. All rights reserved.

Elements of the Date Format Model

Use the formats that are listed in the following tables to display time information and literals, and to
change numerals to spelled numbers.

Element Description

AM or PM Meridian indicator

A.M. or P.M. Meridian indicator with periods

HH or HH12 or HH24 Hour of day, or hour (1-12), or hour (0-23)
MI Minute (0-59)

SS Second (0-59)

SSSSS Seconds past midnight (0-86399)

Oracle Database 11g: SQL Fundamentals | 4 -14

Other Formats

Element Description

/., Punctuation is reproduced in the result.

“of the” Quoted string is reproduced in the result.

Specifying Suffixes to Influence Number Display

Element Description

TH Ordinal number (for example, DDTH for 4TH)

SP Spelled-out number (for example, DDSP for FOUR)

SPTH or THSP Spelled-out ordinal numbers (for example, DDSPTH for
FOURTH)

Oracle Database 11g: SQL Fundamentals| 4 -15

Using the To CHAR Function with Dates

SELECT last name,

TO CHAR (hire date, 'fmDD Month YYYY')
AS HIREDATE

FROM employees;

B Last_mame|l HReDaTE

1 King 17 June 1937

2 Kochhar 21 September 1989
3 De Haan 13 January 1993

4 Hunald 3 January 1990

5 Ernst 21 May 1931

E Lorentz T February 1999

7 Mourgos 16 Movember 1999

g Rajz 17 October 1993

9 Davies 29 January 1997
10 Mstos 15 March 1995

19 Higgins 7 June 1994 |
20 Gietz ¥ June 1954

Copyright © 2009, Oracle. All rights reserved.

Using the TO CHAR Function with Dates

The SQL statement in the slide displays the last names and hire dates for all the employees. The hire
date appears as 17 June 1987.

Example:

Modify the example in the slide to display the dates in a format that appears as “Seventeenth of June
1987 12:00:00 AM.”

SELECT last name,
TO_CHAR (hire date,
'fmDdspth "of" Month YYYY fmHH:MI:SS AM')
HIREDATE
FROM employees;

L4ST_NaME | HIREDATE
1 King Seventeenth of Jume 1937 12:00:00 AM
2 Kochhar Tweenty-First of September 1953 12:00:00 Ak

i
nEn

Notice that the month follows the format model specified; in other words, the first letter is capitalized
and the rest are in lowercase.

Oracle Database 11g: SQL Fundamentals| 4 -16

Using the TO CHAR Function with Numbers

TO CHAR (number, 'format model')

These are some of the format elements that you can use with
the TO CHAR function to display a number value as a

character:
9 Represents a number
0 Forces a zero to be displayed
$ Places a floating dollar sign
L Uses the floating local currency symbol
Prints a decimal point
/ Prints a comma as a thousands indicator

Copyright © 2009, Oracle. All rights reserved.

Using the To CHAR Function with Numbers

When working with number values, such as character strings, you should convert those numbers to
the character data type using the TO CHAR function, which translates a value of NUMBER data type
to VARCHAR?2 data type. This technique is especially useful with concatenation.

Oracle Database 11g: SQL Fundamentals | 4 -17

Using the To CHAR Function with Numbers (continued)

Number Format Elements

If you are converting a number to the character data type, you can use the following format elements:

Element | Description Example Result
9 Numeric position (number of 9s determine display | 999999 1234
width)
0 Display leading zeros 099999 001234
$ Floating dollar sign $999999 $1234
L Floating local currency symbol 1999999 FF1234
D Returns the decimal character in the specified 99D99 99.99
position. The default is a period (.).
Decimal point in position specified 999999.99 1234.00
G Returns the group separator in the specified 9,999 9G999
position. You can specify multiple group
separators in a number format model.
, Comma in position specified 999,999 1,234
MI Minus signs to right (negative values) 999999M1 1234-
PR Parenthesize negative numbers 999999PR <1234>
EEEE Scientific notation (format must specify four Es) 99.999EEEE | 1.234E+03
U Returns in the specified position the “Euro” (or U9999 €1234
other) dual currency
Multiply by 10 n times (7 = number of 9s after V) | 9999V99 123400
S Returns the negative or positive value S9999 -1234 or
+1234
B Display zero values as blank, not 0 B9999.99 1234.00

Oracle Database 11g: SQL Fundamentals| 4 -18

Using the TO CHAR Function with Numbers

SELECTlTO_CHAR(Salary, 1$99,999.00") SALARYl

FROM employees
WHERE last name = 'Ernst';

1 %6,000.00

Copyright © 2009, Oracle. All rights reserved.

Using the To CHAR Function with Numbers (continued)

» The Oracle server displays a string of number signs (#) in place of a whole number whose digits
exceed the number of digits provided in the format model.

» The Oracle server rounds the stored decimal value to the number of decimal places provided in
the format model.

Oracle Database 11g: SQL Fundamentals| 4 -19

Using the TO NUMBER and TO DATE Functions

« Convert a character string to a number format using the
TO NUMBER function:

TO_NUMBER (char[, 'format model'])

« Convert a character string to a date format using the
TO_DATE function:

TO DATE (char[, 'format model'])

 These functions have an £x modifier. This modifier

specifies the exact match for the character argument and
date format model of a TO DATE function.

Copyright © 2009, Oracle. All rights reserved.

Using the TO NUMBER and TO DATE Functions

You may want to convert a character string to either a number or a date. To accomplish this task, use
the TO_NUMBER or TO_DATE functions. The format model that you select is based on the
previously demonstrated format elements.

The £x modifier specifies the exact match for the character argument and date format model of a
TO_DATE function:

* Punctuation and quoted text in the character argument must exactly match (except for case) the
corresponding parts of the format model.

* The character argument cannot have extra blanks. Without £x, the Oracle server ignores extra
blanks.

* Numeric data in the character argument must have the same number of digits as the

corresponding element in the format model. Without £x, the numbers in the character argument
can omit leading zeros.

Oracle Database 11g: SQL Fundamentals | 4 -20

Using the TO NUMBER and TO DATE Functions (continued)

Example:

Display the name and hire date for all employees who started on May 24, 1999. There are two spaces
after the month May and before the number 24 in the following example. Because the £x modifier is
used, an exact match is required and the spaces after the word May are not recognized:

SELECT last name, hire date

FROM employees

WHERE hire date = TO DATE('May 24, 1999', 'fxMonth DD, YYYY');

The resulting error output looks like this:

"ORA-0T858: a non-numeric character was found where a numeric was expec... ﬁf

0 An errar was encountered perfarming the requested operation:

DORA-01858; a non-numeric character vwas found where a numeric was expected
01535, 00000 - "a non-numeric character was found where a numeric was expected”
*Cause: The input data to be converted using a date format model was
incorrect. The input data did not contain a number where g number was
required by the farmat model.
taction: Fix the input data or the date format model to make zure the
elementz match in number and type. Then retry the operation.
Error &t Line:

Oracle Database 11g: SQL Fundamentals | 4 - 21

Using the TO CHAR and TO DATE Function
with RR Date Format

To find employees hired before 1990, use the RR date format,
which produces the same results whether the command is run
in 1999 or now:

SELECT last name, TO CHAR(hire date, 'DD-Mon-YYYY')
FROM employees
WHERE hire date < TO DATE('0l1-Jan-90', 'DD-Mon-RR') ;

LAST _MAME | TO_CHARHIRE_DATE, DD-MOM-5™"") |
1 King 17-Jun-1957
2 Kochhar 21-Zep-1939
3 Whalen 17-Sep-1957

Copyright © 2009, Oracle. All rights reserved.

Using the To CHAR and TO DATE Function with RR Date Format

To find employees who were hired before 1990, the RR format can be used. Because the current year
is greater than 1999, the RR format interprets the year portion of the date from 1950 to 1999.

The following command, on the other hand, results in no rows being selected because the YY format
interprets the year portion of the date in the current century (2090).

SELECT last name, TO CHAR (hire date, 'DD-Mon-yyyy')

FROM employees

WHERE TO DATE (hire date, 'DD-Mon-yy') < '01-Jan-1990';

0 rows selected

Oracle Database 11g: SQL Fundamentals | 4 - 22

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
« Conditional expressions:

— CASE

— DECODE

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 4 -23

Nesting Functions

« Single-row functions can be nested to any level.

* Nested functions are evaluated from the deepest level to
the least deep level.

F3 (F2(,arg2) ,arg3)

Step 1 = Result
Step 2 = Result 2
Step 3 = Result 3

Copyright © 2009, Oracle. All rights reserved.

Nesting Functions

Single-row functions can be nested to any depth. Nested functions are evaluated from the innermost
level to the outermost level. Some examples follow to show you the flexibility of these functions.

Oracle Database 11g: SQL Fundamentals | 4 - 24

Nesting Functions

SELECT last name,

LUPPER(CONCAT(SUBSTR (LAST NAME, 1, 8), ' US'))
FROM employees
WHERE department id = 60;

LAST_MAME | UPPERCCOMCATCSUBSTRILAST _MNAME 1,8),'_LIS™)

1 Hunald HUMCLD _US
2 Ernst ERMST_US
3 Lorentz LOREMTZ_IIS

Copyright © 2009, Oracle. All rights reserved.

Nesting Functions (continued)

The slide example displays the last names of employees in department 60. The evaluation of the SQL
statement involves three steps:
1. The inner function retrieves the first eight characters of the last name.
Resultl = SUBSTR (LAST NAME, 1, 8)
2. The outer function concatenates the result with _US.
Result2 = CONCAT (Resultl, ' US')
3. The outermost function converts the results to uppercase.

The entire expression becomes the column heading because no column alias was given.
Example:

Display the date of the next Friday that is six months from the hire date. The resulting date should
appear as Friday, August 13th, 1999. Order the results by hire date.

SELECT TO_ CHAR (NEXT DAY (ADD MONTHS
(hire date, 6), 'FRIDAY'),
'fmDay, Month ddth, YYYY')
"Next 6 Month Review"

FROM employees

ORDER BY hire date;

Oracle Database 11g: SQL Fundamentals | 4 - 25

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
» Conditional expressions:

— CASE

— DECODE

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 4 - 26

General Functions

The following functions work with any data type and pertain to
using nulls:

* NVL (exprl, expr2)

* NVL2 (exprl, expr2, expr3)

* NULLIF (exprl, expr2)

* COALESCE (exprl, expr2, ..., exprn)

Copyright © 2009, Oracle. All rights reserved.

General Functions

These functions work with any data type and pertain to the use of null values in the expression list.

Function Description
NVL Converts a null value to an actual value
NVL2 If exprl is not null, NVL2 returns expr2. If exprl is null, NVL2

returns expr3. The argument expr1 can have any data type.

NULLIF Compares two expressions and returns null if they are equal; returns
the first expression if they are not equal

COALESCE | Returns the first non-null expression in the expression list

Note: For more information about the hundreds of functions available, see the section on Functions

in Oracle Database SOL Language Reference 11g, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals | 4 - 27

NVL Function

Converts a null value to an actual value:

« Data types that can be used are date, character, and
number.
« Data types must match:
— NVL (commission pct, 0)
— NVL (hire date, '01-JAN-97")
— NVL(job_id, 'No Job Yet')

Copyright © 2009, Oracle. All rights reserved.

NVL Function
To convert a null value to an actual value, use the NVL function.

Syntax
NVL (exprl, expr2)

In the syntax:
« exprl is the source value or expression that may contain a null
« expr?2 is the target value for converting the null

You can use the NVL function to convert any data type, but the return value is always the same as the
data type of expri.

NVL Conversions for Various Data Types

Data Type Conversion Example

NUMBER NVL (number column, 9)

DATE NVL (date column, '01-JAN-95'")

CHAR or VARCHAR2 NVL (character column, 'Unavailable')

Oracle Database 11g: SQL Fundamentals | 4 - 28

Using the NVL Function

SELECT last name, salary,lWL(comissionJct, 0)|:' :

|(sa1ary*12) + (salary*12*NVL (commission pct, 0)) AN_SALl,_@
FROM employees;

LasT_mave @ salary (B nviccommssion et (@ an_saL |

1 King 240000 0 288000
2 Kochhar 17000 0 204000
3 De Haan 17000 0 204000
4 Hunold 3000 0 108000
5 Ernst 5000 0 72000
§ Lorentz 4200 0 50400
7 Mourgos 5500 u] G3600
8 Rajs 3500 0 42000
9 Davies 300 0 37200
10 Matos 2600 0 31200
11 Vargas 2500 0 30000
12 Ziotkey 10500 4 02 4151200

Copyright © 2009, Oracle. All rights reserved.

Using the NVL Function

To calculate the annual compensation of all employees, you need to multiply the monthly salary by
12 and then add the commission percentage to the result:

SELECT last name, salary, commission pct,
(salary*12) + (salary*l2*commission pct) AN SAL
FROM employees;

LasT_Mame (B saLery (B commssion_pct (B an_saL ||
1 King 24000 () (il |
11 Nargas 2500 [rlly [nuih
12 Zlotkey 10500 02 151200
13 Akl 11000 03 171600

Notice that the annual compensation is calculated for only those employees who earn a commission.
If any column value in an expression is null, the result is null. To calculate values for all employees,
you must convert the null value to a number before applying the arithmetic operator. In the example
in the slide, the NVL function is used to convert null values to zero.

Oracle Database 11g: SQL Fundamentals | 4 -29

Using the NVL2 Function

SELECT last name, salary, |commission pct 1

NVL2 (commission pct,
'SAL+COMM', 'SAL') income

FROM employees WHERE department id IN (50, 80);

LasT_nave [{ salery [§ commzsion pet [§ moome |
1 Mourgos 5500 (rully AL
2 Rajs 3500 () SAL
3 Davies 3100 [null) SaL
4 Matos 2600 (null) SAL
5 Vargas 2500 [rll) AL
6 Ziotkey 10500 0.2 SAL+COMM
7 Abel 11000 0.3 SAL+COMM
§ Taylor 5600 0.2 SAL+COMM

Copyright © 2009, Oracle. All rights reserved.

Using the NVL2 Function

The NVL2 function examines the first expression. If the first expression is not null, then the NVL2
function returns the second expression. If the first expression is null, then the third expression is
returned.
Syntax
NVL2 (exprl, expr2, expr3)

In the syntax:

« expr1l is the source value or expression that may contain a null

. expr?2 is the value that is returned if expr1 is not null

« expr3 is the value that is returned if expr1 is null

In the example shown in the slide, the COMMISSION PCT column is examined. If a value is
detected, the text literal value of SAL+COMM is returned. If the COMMISSION PCT column contains
a null value, the text literal value of SAL is returned.

Notes: The argument exprl can have any data type. The arguments expr2 and expzr3 can have
any data types except LONG.

Oracle Database 11g: SQL Fundamentals | 4 -30

Using the NULLIF Function

SELECT first name, |[LENGTH(first name) "exprl"
last name, |[LENGTH(last name) "expr2", *———l:ii>
|NULLIF (LENGTH (first name), LENGTH(last name)) result 4—@
FROM employees;

B Frst_ame B exprt B LasT wame |f exerz |B REsuLT

1 Ellen 5 Ahel 4 5
2 Curtis G Davies G [rul)
3 Lex 3 De Haan v 3
4 Bruce 5 Ernst] {rully
5 Pat JFay 3 [rul)
& William T itz 3 v
T Kimberely 9 Grant] g
19 Jennifer 3 Whalen 5] 5]
20 Eleni 5 Zlatkey

Copyright © 2009, Oracle. All rights reserved.

Using the NULLIF Function

The NULLIF function compares two expressions. If they are equal, the function returns a null. If

they are not equal, the function returns the first expression. However, you cannot specify the literal
NULL for the first expression.

Syntax
NULLIF (exprl, expr2)

In the syntax:

« NULLIF compares exprl and expr?2. If they are equal, then the function returns null. If they
are not, then the function returns expr1. However, you cannot specify the literal NULL for
exprli.

In the example shown in the slide, the length of the first name in the EMPLOYEES table is compared
to the length of the last name in the EMPLOYEES table. When the lengths of the names are equal, a
null value is displayed. When the lengths of the names are not equal, the length of the first name is
displayed.

Note: The NULLIF function is logically equivalent to the following CASE expression. The CASE

expression is discussed on a subsequent page:
CASE WHEN exprl = expr 2 THEN NULL ELSE exprl END

Oracle Database 11g: SQL Fundamentals | 4 - 31

Using the COALESCE Function

« The advantage of the COALESCE function over the NVL
function is that the COALESCE function can take multiple
alternate values.

* If the first expression is not null, the COALESCE function
returns that expression; otherwise, it does a COALESCE of
the remaining expressions.

Copyright © 2009, Oracle. All rights reserved.

Using the COALESCE Function

The COALESCE function returns the first non-null expression in the list.

Syntax
COALESCE (exprl, expr2, ... exprn)

In the syntax:
« exprl returns this expression if it is not null
« expr2 returns this expression if the first expression is null and this expression is not null
« exprn returns this expression if the preceding expressions are null

Note that all expressions must be of the same data type.

Oracle Database 11g: SQL Fundamentals | 4 - 32

Using the COALESCE Function

SELECT last name, employee id,

COALESCE (TO_CHAR (commission pct),TO CHAR (manager id),
'No commission and no manager')

FROM employees;

LAST_MAME | EMPLOYEE_ID | COALESCE[TO_CHAR[COM"

1 King 100 Mo commission and no manager
2 Haochhar 101 100

3 De Haan 102100

4 Hunold 103102

5 Ernat 104103

5 Lorentz 107 103

7 Mourgos 124100

g Rajz 141124

12 Zlotkey 149 .2

13 Ahel 174 3

14 Taylor 176 .2

15 Grart 178 15

16 Whalen 20010

Copyright © 2009, Oracle. All rights reserved.

Using the COALESCE Function (continued)

In the example shown in the slide, if the manager id value is not null, it is displayed. If the
manager id value is null, then the commission pct is displayed. If the manager id and
commission pct values are null, then “No commission and no manager” is displayed. Note,
TO_CHAR function is applied so that all expressions are of the same data type.

Oracle Database 11g: SQL Fundamentals | 4 -33

Using the COALESCE Function (continued)
Example:

For the employees who do not get any commission, your organization wants to give a salary
increment of $2,000 and for employees who get commission, the query should compute the new
salary that is equal to the existing salary added to the commission amount.

SELECT last name, salary, commission pct,

COALESCE ((salary+ (commission pct*salary)), salary+2000, salary) "New
Salary"

FROM employees;

Note: Examine the output. For employees who do not get any commission, the New Salary column
shows the salary incremented by $2,000 and for employees who get commission, the New Salary
column shows the computed commission amount added to the salary.

LasT mane (B sacary B commission Pt (B Mew Salary

1 King 24000 (raull) 26000
2 Wachhar 17000 (raully 19000
3 De Haan 17000 (rull) 19000
4 Hunald 9000 rally 11000
9 Davies 3100 [rlly S100
10 Matos 2600 (il 4600
11 Vargas 2500 [rll) 4500
12 Zlctkey 10500 . 12600
13 Abel 11000 0.3 14300
14 Tavylor 5600 0.2 10320
15 Grart 7000 015 5050
16 Ywhalen 4400 (il 5400
17 Hartstein 13000 (riull) 15000
18 Favy 5000 (riull) 5000
19 Higgins 12000 (il 14000
20 Gietz 5300 (il 10300

Oracle Database 11g: SQL Fundamentals | 4 - 34

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
« Conditional expressions:

— CASE

— DECODE

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 4 - 35

Conditional Expressions

* Provide the use of the IF-THEN-ELSE logic within a SQL
statement

 Use two methods:
— CASE expression
— DECODE function

Copyright © 2009, Oracle. All rights reserved.

Conditional Expressions

The two methods that are used to implement conditional processing (IF-THEN-ELSE logic) in a
SQL statement are the CASE expression and the DECODE function.

Note: The CASE expression complies with the ANSI SQL. The DECODE function is specific to
Oracle syntax.

Oracle Database 11g: SQL Fundamentals | 4 - 36

CASE Expression

Facilitates conditional inquiries by doing the work of an
IF-THEN-ELSE statement:

CASE expr WHEN comparison exprl THEN return exprl
[WHEN comparison expr2 THEN return expr2
WHEN comparison exprn THEN return exprn
ELSE else expr]

END

Copyright © 2009, Oracle. All rights reserved.

CASE Expression
CASE expressions allow you to use the IF-THEN-ELSE logic in SQL statements without having to
invoke procedures.
In a simple CASE expression, the Oracle server searches for the first WHEN ... THEN pair for
which expr is equal to comparison expr and returns return_ expr. If none of the WHEN

THEN pairs meet this condition, and if an ELSE clause exists, then the Oracle server returns

else expr. Otherwise, the Oracle server returns a null. You cannot specify the literal NULL for all
the return exprs and the else expr.

All of the expressions (expr, comparison expr, and return_ expr) must be of the same
data type, which can be CHAR, VARCHAR2, NCHAR, or NVARCHAR?2.

Oracle Database 11g: SQL Fundamentals | 4 - 37

Using the CASE Expression

Facilitates conditional inquiries by doing the work of an

IF-THEN-ELSE statement:

SELECT last name, job id, salary,

CASE job id WHEN 'IT PROG' THEN 1l.l1l0*salary
WHEN 'ST CLERK' THEN 1l1l.l1l5*salary
WHEN 'SA REP' THEN 1.20*salary

ELSE salary END "REVISED SALARY"

FROM employees;

| B Lastrmeme @ soeip B salsry 8 RevisED_SaLary
5 Ernst IT_PROG £000 B600
& Lorentz IT_PROG 4200 4620
7 Mourgos ST_MAR 2300 2500
& Rajs ST_CLERK 3500 4025
9 Davies ST_CLERK 3100 3565
13 Abel SA_REP 11000 13200
14 Taylor SA_REP 5600 10320

Copyright © 2009, Oracle. All rights reserved.

Using the CASE Expression

In the SQL statement in the slide, the value of JOB ID is decoded. If JOB_ID1s IT PROG, the
salary increase is 10%; if JOB_IDis ST CLERK, the salary increase is 15%; if JOB_ID is
SA_REP, the salary increase is 20%. For all other job roles, there is no increase in salary.

The same statement can be written with the DECODE function.

The following code is an example of the searched CASE expression. In a searched CASE expression,

the search occurs from left to right until an occurrence of the listed condition is found, and then it
returns the return expression. If no condition is found to be true, and if an ELSE clause exists, the
return expression in the ELSE clause is returned; otherwise, a NULL is returned.
SELECT last name,salary,
(CASE WHEN salary<5000 THEN 'Low'
WHEN salary<10000 THEN 'Medium'
WHEN salary<20000 THEN 'Good'
ELSE 'Excellent'
END) qualified salary
FROM employees;

Oracle Database 11g: SQL Fundamentals | 4 - 38

DECODE Function

Facilitates conditional inquiries by doing the work of a CASE
expression or an IF-THEN-ELSE statement:

DECODE (col |expression, searchl, resultl
[, search2, result2,...,]
[, default])

Copyright © 2009, Oracle. All rights reserved.

DECODE Function

The DECODE function decodes an expression in a way similar to the TF-THEN-ELSE logic that is
used in various languages. The DECODE function decodes expression after comparing it to each
search value. If the expression is the same as search, result is returned.

If the default value is omitted, a null value is returned where a search value does not match any of the
result values.

Oracle Database 11g: SQL Fundamentals | 4 -39

Using the DECODE Function

SELECT last name, job id, salary,

DECODE (job_id, 'IT PROG', 1.10*salary,
'ST CLERK', l.15*salary,
'SA REP', 1.20*salary,

salary)
REVISED_SALARY
FROM employees ;

| g Lestneme] soBp (@ salsrv B REVISED SaLary
B Lorertz IT_PROG 4200 4620
7 Mourgos ST_MAN 5800 5500
& Rajs ST_CLERK 3500 4025
13 Abel Sa_REP 11000 13200
14 Talor S&_REP 8600 10320

Copyright © 2009, Oracle. All rights reserved.

Using the DECODE Function

In the SQL statement in the slide, the value of JOB ID is tested. If JOB IDis IT PROG, the salary
increase is 10%; if JOB_IDis ST CLERK, the salary increase is 15%; if JOB_IDis SA_ REP, the
salary increase is 20%. For all other job roles, there is no increase in salary.

The same statement can be expressed in pseudocode as an IF-THEN-ELSE statement:

IF job id = 'IT PROG!' THEN salary = salary*1.10
IF job id = 'ST CLERK!' THEN salary salary*1.15
IF job id = 'SA REP' THEN salary salary*1.20
ELSE salary = salary

Oracle Database 11g: SQL Fundamentals | 4 -40

Using the DECODE Function

Display the applicable tax rate for each employee in
department 80:

SELECT last name, salary,
DECODE (TRUNC (salary/2000, 0),
0, 0.00,
, 0.09,
0.20,
0.30,
0.40,
0.42,
0.44,
0.45) TAX RATE

-

-

~

O Ul b WIDN PR
~

~

FROM employees
WHERE department id = 80;

Copyright © 2009, Oracle. All rights reserved.

Using the DECODE Function (continued)

This slide shows another example using the DECODE function. In this example, you determine the
tax rate for each employee in department 80 based on the monthly salary. The tax rates are as
follows:

Monthly Salary Range Tax Rate
$0.00-1,999.99 00%
$2,000.00-3,999.99 09%
$4,000.00-5,999.99 20%
$6,000.00—-7,999.99 30%
$8,000.00-9,999.99 40%
$10,000.00-11,999.99 42%
$12,200.00-13,999.99 44%
$14,000.00 or greater 45%

B LasT mMame Bl saLary (Bl Tax RaTE

1 Zlotkey 10500 042
2 Ahel 14000 042
3 Tavlor ae00 0.4

Oracle Database 11g: SQL Fundamentals | 4 - 41

Quiz

The TO NUMBER function converts either character strings or
date values to a number in the format specified by the optional
format model.

1. True
2. False

Copyright © 2009, Oracle. All rights reserved.

Answer: 2

Oracle Database 11g: SQL Fundamentals | 4 -42

Summary

In this lesson, you should have learned how to:

« Alter date formats for display using functions
« Convert column data types using functions

« Use NVL functions

 Use IF-THEN-ELSE logic and other conditional
expressions in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.

Summary

Remember the following:

» Conversion functions can convert character, date, and numeric values: TO CHAR, TO DATE,
TO_NUMBER

» There are several functions that pertain to nulls, including NVL, NVL2, NULLIF, and
COALESCE.

 IF-THEN-ELSE logic can be applied within a SQL statement by using the CASE expression or
the DECODE function.

Oracle Database 11g: SQL Fundamentals | 4 -43

Practice 4: Overview

This practice covers the following topics:
« Creating queries that use TO CHAR, TO_DATE, and other
DATE functions

« Creating queries that use conditional expressions such as
DECODE and CASE

Copyright © 2009, Oracle. All rights reserved.

Practice 4: Overview
This practice provides a variety of exercises using TO CHAR and TO DATE functions, and
conditional expressions such as DECODE and CASE. Remember that for nested functions, the results
are evaluated from the innermost function to the outermost function.

Oracle Database 11g: SQL Fundamentals | 4 -44

Practice 4

1. Create a report that produces the following for each employee:
<employee last name> earns <salary> monthly but wants <3 times
salary.>. Label the column Dream Salaries.

Dream Salaries
1 King earns $24 ,000.00 monthly but wants 572,000.00.
2 Kochhar earns $17 ,000.00 morthly but wants $51,000.00.
3 De Haan earnz $17,000.00 monthly but swants $51,000.00,
4 Hunold earns $3,000.00 morthly bt wwants $27,000.00.
S Ernst earns $6,000.00 monthly but weant=s $18 00000,

19 Higginz earns $12,000.00 monthly bt wants $36,000.00.
20 Gietz earns $5,300.00 monthly but wantz 324 200.00.

2. Display each employee’s last name, hire date, and salary review date, which is the first Monday
after six months of service. Label the column REVIEW. Format the dates to appear in the format
similar to “Monday, the Thirty-First of July, 2000.”

L&ST_MAME [HRE DaTE |B REVIEW

1 King 17-JUN-8Y Monday, the Twenty-First of December, 1957

2 Kochhar 21-ZEP-89 Monday, the Twenty-Sixth of March, 1330

3 De Haan 13-JARN-93 Monday, the Nineteerth of July, 1993

4 Hunold 03-JAR-90 Monday, the MNinth of July, 1990

S Ernst 21-MaNY-91 Monday, the Twenty-Fifth of November, 1991
19 Higgins 07-JUM-34 Monday, the Twelfth of December, 1934
20 Gietz O7-JUM-94 Monday, the Twwelfth of December, 1934

Oracle Database 11g: SQL Fundamentals | 4 -45

Practice 4 (continued)

3. Display the last name, hire date, and day of the week on which the employee started. Label the
column DAY. Order the results by the day of the week, starting with Monday.

LAST MAME (HRE DaTE | Dav
1 Grart 24-M&Y-93 MONDAY
2 Gistz 07-JUN-34 TUESDAY
3 Tawlar 24-MAR-95 TUESDAY
4 Higgins 07-JUN-34 TUESDAY
5 Rajs 17-0CT-85 TUESDAY
19 Lorentz 07-FEB-99 SUNDAY
20 Fay 17-8UG-97 SUNDAY

4. Create a query that displays the employees’ last names and commission amounts. If an employee
does not earn commission, show “No Commission.” Label the column COMM.

LasT mame (B comm
1 King Mo Commizsion
2 Kachhar Mo Commizsion
3 De Haan Mo Commission
4 Hunold Mo Commizsion
S Ernst Mo Commizsion
6 Lorentz Mo Commission
12 Flotkey 2
13 Abel 3
14 Tavylor 2
15 Grant 15
16 Whalen Mo Commission
17 Hartstein Mo Commission
158 Fay Mo Commizsion
19 Higginz Mo Commizsion
/a 20 Gietz Mo Commizssion

Oracle Database 11g: SQL Fundamentals | 4 - 46

Practice 4 (continued)
If you have time, complete the following exercises:

5. Using the DECODE function, write a query that displays the grade of all employees based on the
value of the column JOB_ID, using the following data:

Job Grade
AD PRES

ST MAN

IT PROG

SA REP

ST CLERK

None of the above

omHUMNW

JOB_ID GRADE
1 &C_ACCOUNT 0

2 AC_MGR 0
3 AD_ASST O
4 AD_PRES 2
5 AD_WP 0

18 ST_CLERK E
139 ST_CLERK E
20 ST_mAan B

6. Rewrite the statement in the preceding exercise using the CASE syntax.

B soei |B ocraoe

1 AC_ACCOUNT O
2 AC_MGR 0
3 80_ASST O
4 AD_PRES A
5 AD VP 0
18 ST_CLERK E
19 ST_CLERK

20 ST_MAN B

Oracle Database 11g: SQL Fundamentals | 4 - 47

Reporting Aggregated Data
Using the Group Functions

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
* Identify the available group functions
« Describe the use of group functions
* Group data by using the GROUP BRY clause
* Include or exclude grouped rows by using the HAVING
clause

Copyright © 2009, Oracle. All rights reserved.

Objectives
This lesson further addresses functions. It focuses on obtaining summary information (such as
averages) for groups of rows. It discusses how to group rows in a table into smaller sets and how to
specify search criteria for groups of rows.

Oracle Database 11g: SQL Fundamentals| 5 -2

Lesson Agenda

* Group functions:
— Types and syntax
— Use AVG, SUM, MIN, MAX, COUNT
— Use DISTINCT keyword within group functions
— NULL values in a group function
* Grouping rows:
— GROUP BRY clause
— HAVING clause

« Nesting group functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 5-3

What Are Group Functions?

Group functions operate on sets of rows to give one result per

group.
EMPLOYEES
DEFARTMENT IO | SALARY
1 a0 24000
2 a0 17000
3 a0 17000
4 g0 a000
5 g0 F000
& f0 4200 . .
; = = | Maximum salary in B_maxsaLary
8 50 ss00| EMPLOYEES table 24000
] 50 3100
10 50 2600
18 20 F000
19 110 12000
20 110 &300
—

Copyright © 2009, Oracle. All rights reserved.

What Are Group Functions?

Unlike single-row functions, group functions operate on sets of rows to give one result per group.
These sets may comprise the entire table or the table split into groups.

Oracle Database 11g: SQL Fundamentals| 5-4

Types of Group Functions

e AVG
° COUNT
d MAX
° MIN —_—
Group
* STDDEV functions
° SUM

* VARIANCE

Copyright © 2009, Oracle. All rights reserved.

Types of Group Functions

Each of the functions accepts an argument. The following table identifies the options that you can
use in the syntax:

Function Description

AVG ([DISTINCT|ALL] n) Average value of n, ignoring null values

COUNT ({*| [DISTINCT|ALL] expr | Number of rows, where expr evaluates to

) something other than null (count all selected
rows using *, including duplicates and rows
with nulls)

MAX ([DISTINCT |ALL] expr) Maximum value of expr, ignoring null values

MIN ([DISTINCT |ALL] expr) Minimum value of expzr, ignoring null values

STDDEV ([DISTINCT |ALL] x) Standard deviation of n, ignoring null values

SUM ([DISTINCT |ALL] n) Sum values of n, ignoring null values

VARIANCE ([DISTINCT|ALL] x) Variance of n, ignoring null values

Oracle Database 11g: SQL Fundamentals| 5-5

Group Functions: Syntax

SELECT group function (column),
FROM table
[WHERE condition]

[ORDER BY column];

Copyright © 2009, Oracle. All rights reserved.

Group Functions: Syntax
The group function is placed after the SELECT keyword. You may have multiple group functions
separated by commas.

Guidelines for using the group functions:
« DISTINCT makes the function consider only nonduplicate values; ALL makes it consider every

value, including duplicates. The default is ALL and therefore does not need to be specified.
» The data types for the functions with an expr argument may be CHAR, VARCHAR2, NUMBER,

or DATE.
 All group functions ignore null values. To substitute a value for null values, use the NVL, NVL2,

or COALESCE functions.

Oracle Database 11g: SQL Fundamentals| 5-6

Using the AvG and suM Functions

You can use AVG and SUM for numeric data.

SELECT|AVG(salary), MAX(salary),

MIN(salary), SUM(salary)
FROM employees

WHERE job id LIKE 'SREP%';

avorsaLary) B mexsatery) [0 mnsaisry) (B sumsaary
1 5150 11000 £000 32600

Copyright © 2009, Oracle. All rights reserved.

Using the AvG and sUM Functions

You can use the AVG, SUM, MIN, and MAX functions against the columns that can store numeric data.

The example in the slide displays the average, highest, lowest, and sum of monthly salaries for all
sales representatives.

Oracle Database 11g: SQL Fundamentals| 5-7

Using the MIN and MAX Functions

You can use MIN and MAX for numeric, character, and date
data types.

SELECTlMIN(hire date), MAX (hire date)l

FROM employees;

MINCHIRE_DATE) [M&X(HIRE_DATE)
1 17-JUN-G7 29-JAN-00

Copyright © 2009, Oracle. All rights reserved.

Using the MIN and MAX Functions

You can use the MAX and MIN functions for numeric, character, and date data types. The example in
the slide displays the most junior and most senior employees.

The following example displays the employee last name that is first and the employee last name that
is last in an alphabetic list of all employees:

SELECT MIN(last name), MAX(last name)
FROM employees;

|
MINCLAST_MAME) (B MAX(LAST_NMAME)
1 Ahel Tlatkey

Note: The AVG, SUM, VARIANCE, and STDDEV functions can be used only with numeric data types.
MAX and MIN cannot be used with LOB or LONG data types.

Oracle Database 11g: SQL Fundamentals| 5-8

Using the COUNT Function

COUNT (*) returns the number of rows in a table:

SELECT| COUNT (*)
@ FROM employees

WHERE department id = 50;

COUNT(®)
1 5

COUNT (expr) returns the number of rows with non-null values
for expr:

FROM employees

@ SELECT | COUNT (commission_Pct)l
WHERE department id = 80;

COUNT(COMMISSION_F‘CT)|
1 3

Copyright © 2009, Oracle. All rights reserved.

Using the COUNT Function

The COUNT function has three formats:

e COUNT (*)

« COUNT (expr)

o« COUNT (DISTINCT expr)
COUNT (*) returns the number of rows in a table that satisfy the criteria of the SELECT statement,
including duplicate rows and rows containing null values in any of the columns. If a WHERE clause is
included in the SELECT statement, COUNT (*) returns the number of rows that satisfy the condition
in the WHERE clause.

In contrast, COUNT (expzr) returns the number of non-null values that are in the column identified
by expr.

COUNT (DISTINCT expr) returns the number of unique, non-null values that are in the column
identified by expr.
Examples:
1. The example in the slide displays the number of employees in department 50.
2. The example in the slide displays the number of employees in department 80 who can earn a
commission.

Oracle Database 11g: SQL Fundamentals| 5-9

Using the DISTINCT Keyword

* COUNT (DISTINCT expr) returns the number of distinct
non-null values of expr.

« To display the number of distinct department values in the
EMPLOYEES table:

SELECT | COUNT (DISTINCT department id) |
FROM employees;

COUNT(DISTINCTDEP ARTMENT D)
1 7

Copyright © 2009, Oracle. All rights reserved.

Using the DISTINCT Keyword
Use the DISTINCT keyword to suppress the counting of any duplicate values in a column.

The example in the slide displays the number of distinct department values that are in the
EMPLOYEES table.

Oracle Database 11g: SQL Fundamentals| 5-10

Group Functions and Null Values

Group functions ignore null values in the column:

SELECT |AVG (commission pct) |
FROM employees;

AW GICOMMISEICN_PCT) |
1 02125

The NVL function forces group functions to include null values:

SELECT |AVG (NVL (commission pct, 0))
FROM employees;

AW GIRNYLOCOMMISSION_PCT 000
1 0.0425

Copyright © 2009, Oracle. All rights reserved.

Group Functions and Null Values

All group functions ignore null values in the column.
However, the NVL function forces group functions to include null values.

Examples:

1. The average is calculated based on only those rows in the table in which a valid value is stored
in the COMMISSION PCT column. The average is calculated as the total commission that is
paid to all employees divided by the number of employees receiving a commission (four).

2. The average is calculated based on all rows in the table, regardless of whether null values are
stored in the COMMISSION PCT column. The average is calculated as the total commission
that is paid to all employees divided by the total number of employees in the company (20).

Oracle Database 11g: SQL Fundamentals | 5 - 11

Lesson Agenda

» Group functions:
— Types and syntax
— Use AVG, SUM, MIN, MAX, COUNT
— Use DISTINCT keyword within group functions
— NULL values in a group function
* Grouping rows:
— GROUP BY clause
— HAVING clause

* Nesting group functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 5-12

Creating Groups of Data
EMPLOYEES

DERARTMENT 1D | SALARY .

; 0 20| 4400 Average salary in

= - T EMPLOYEES table for

3 20 sooo| 9500 each department

4 50 5500

pEPaRTMENT D [aveisaLary)

: =0 250 1 10 4400
B a0 2600] 3500 . o 2500
7 50 3100 X o <00
3 =0 2500 4 g0 §400
? =l 0 6400 5 80 10033.333333333333...
1 &t Bonn & 80 19333 333333333333
. R

10033 B () 7000

13 g0 10500
14 a0 8500
19 110 12000
20 (i) 7000

Copyright © 2009, Oracle. All rights reserved.

Creating Groups of Data

Until this point in our discussion, all group functions have treated the table as one large group of
information. At times, however, you need to divide the table of information into smaller groups. This
can be done by using the GROUP BY clause.

Oracle Database 11g: SQL Fundamentals| 5-13

Creating Groups of Data:
GROUP BY Clause Syntax

SELECT column, group function(column)
FROM table
[WHERE condition]

[GROUP BY group by expression]
[ORDER BY column] ;

You can divide rows in a table into smaller groups by using the
GROUP BY clause.

Copyright © 2009, Oracle. All rights reserved.

Creating Groups of Data: GROUP BY Clause Syntax

You can use the GROUP BY clause to divide the rows in a table into groups. You can then use the
group functions to return summary information for each group.

In the syntax:
group by expression specifies columns whose values determine the basis for
grouping rows
Guidelines
» If you include a group function in a SELECT clause, you cannot select individual results as well,
unless the individual column appears in the GROUP BY clause. You receive an error message if
you fail to include the column list in the GROUP BY clause.
» Using a WHERE clause, you can exclude rows before dividing them into groups.
* You must include the columns in the GROUP BY clause.
* You cannot use a column alias in the GROUP BY clause.

Oracle Database 11g: SQL Fundamentals | 5 -14

Using the GROUP BY Clause

All columns in the SELECT list that are not in group functions
must be in the GROUP BY clause.

SELECT department id,| AVG(salary)
FROM employees
| GROUP BY department id |;

DEFARTMENT ID | ANGISALARY)
1 (il 7000
2 80 19333.33333333333...
3 20 8500
4 110 10150
5 50 3500
B 80 10033.33333333333 ..
7 g0 £400
8 10 4400

Copyright © 2009, Oracle. All rights reserved.

Using the GROUP BY Clause

When using the GROUP BY clause, make sure that all columns in the SELECT list that are not group
functions are included in the GROUP BY clause. The example in the slide displays the department
number and the average salary for each department. Here is how this SELECT statement, containing
a GROUP BY clause, is evaluated:
* The SELECT clause specifies the columns to be retrieved, as follows:
- Department number column in the EMPLOYEES table
- The average of all salaries in the group that you specified in the GROUP BY clause
» The FROM clause specifies the tables that the database must access: the EMPLOYEES table
» The WHERE clause specifies the rows to be retrieved. Because there is no WHERE clause, all
rows are retrieved by default.
» The GROUP BY clause specifies how the rows should be grouped. The rows are grouped by
department number, so the AVG function that is applied to the salary column calculates the

average salary for each department.

Oracle Database 11g: SQL Fundamentals| 5-15

Using the GROUP BY Clause

The GROUP BY column does not have to be in the SELECT list.

SELECT AVG(salary)
FROM employees
GROUP BY department id

~e

AVGISALARY)

7000
19333.333333353333333333335. .
9500

10130

Fa00
10033.33333333533333533335333...
G400

4400

w4 m th = Wk

Copyright © 2009, Oracle. All rights reserved.

Using the GROUP BY Clause (continued)

The GROUP BY column does not have to be in the SELECT clause. For example, the SELECT
statement in the slide displays the average salaries for each department without displaying the
respective department numbers. Without the department numbers, however, the results do not look
meaningful.

You can also use the group function in the ORDER BY clause:
SELECT department id, AVG(salary)
FROM employees
GROUP BY department id
ORDER BY AVG (salary) ;

B ocerarTMeENT D (B aveisaLzRy)
1 & 3500
2 10 4400
3 50 6400
7 110 10150
5 90 19333.3333333333333333333333333333333333

Oracle Database 11g: SQL Fundamentals| 5-16

Grouping by More than One Column
EMPLOYEES Add the salaries in the EMPLOYEES
table for each job, grouped by
pEPaRTMENT D [JoB_D |8 saLary department.
1 10 AD_ASST 4400
2 20 MK_MAN 13000 8 oerertventp |l soBp (@ sumzaLary)
3 20 M_RER s0ao 1 10 AD_AZST 4400
4 SO ST_MAN S800 2 200 MK _MAN 13000
5 50 5T_CLERK 2500 i . c000
5 S0 =T_CLERK 2600 4 50 =T_CLERK 11700
7 50 5T_CLERK 3100 c = 2500
5 50 ST_CLERK 3500 . e 19200
3 B0 IT_PROG 4200 ; e 10500
10 B0 IT_PROG 600N . D 19500
11 BOIT_PROG 3000 . Y 24000
12 50 54 _REP 11000 10 oL 24000
= B0 SA_MAN 10500 11 110 AC_ACCOLNT 8300
14 30 =ARER 5600 12 110 AC_MGR 12000
el 13 (ruil) Sé_REP 7000
19 110 AC_MGR 12000
20 (null) =4_REP 7000

Copyright © 2009, Oracle. All rights reserved.

Grouping by More than One Column

Sometimes, you need to see results for groups within groups. The slide shows a report that displays
the total salary that is paid to each job title in each department.

The EMPLOYEES table is grouped first by the department number, and then by the job title within
that grouping. For example, the four stock clerks in department 50 are grouped together, and a single
result (total salary) is produced for all stock clerks in the group.

The following SELECT statement returns the result shown in the slide:

SELECT department id, job id, sum(salary)
FROM employees

GROUP BY department id, job_ id

ORDER BY job id;

Oracle Database 11g: SQL Fundamentals| 5-17

Using the GROUP BY Clause
on Multiple Columns

SELECT department id, job id, SUM(salary)
FROM employees

WHERE department id > 40

GROUP BY department id, job id|

ORDER BY department_id;

pEPaRTMENT D [JoB_D B SUMGSALARY)
1 50 =T_CLERK 11700
2 50 ST_MaN 5800
3 BOIT_PROG 19200
4 B0 24 _MAN 10500
5 80 54 _REP 19600
5 90 AD_PRES 24000
7 90 AD_WP 34000
8 110 AC_ACCOUNT £300
3 110 AC_MGR 12000

Copyright © 2009, Oracle. All rights reserved.

Using the Group By Clause on Multiple Columns

You can return summary results for groups and subgroups by listing multiple GROUP BY columns.
The GROUP BY clause groups rows but does not guarantee the order of the result set. To order the
groupings, use the ORDER BY clause.

In the example in the slide, the SELECT statement that contains a GROUP BY clause is evaluated as
follows:
» The SELECT clause specifies the column to be retrieved:
- Department ID in the EMPLOYEES table
- Job ID in the EMPLOYEES table
- The sum of all salaries in the group that you specified in the GROUP BY clause
» The FROM clause specifies the tables that the database must access: the EMPLOYEES table.
» The WHERE clause reduces the result set to those rows where department ID is greater than 40.
» The GROUP BY clause specifies how you must group the resulting rows:
- First, the rows are grouped by the department ID.
- Second, the rows are grouped by job ID in the department ID groups.
* The ORDER BY clause sorts the results by department ID.

Notes: The SUM function is applied to the salary column for all job IDs in the result set in each

department ID group. Also, note that the SA REP row is not returned. The department ID for this
row i1s NULL, and therefore, does not meet the WHERE condition.

Oracle Database 11g: SQL Fundamentals| 5-18

lllegal Queries
Using Group Functions

Any column or expression in the SELECT list that is not an
aggregate function must be in the GROUP BY clause:

SELECT department id, COUNT (last name)
FROM employees;

| ORA-00357: not & single-group group function A GROUP BY CIause mUSt be addEd tO
00937. 00000 - "net & single-group group function| count the |ast names for each
department id.

SELECT department id, job id, COUNT (last name)
FROM employees
GROUP BY department id;

Either add job id in the GROUP BY or
OR&-00979: not & GROUP BY expression th . o, I f th
00575, 00000 - "net & GROLF B expressiore | T€MOVE the job_id column from the
SELECT list.

Copyright © 2009, Oracle. All rights reserved.

lllegal Queries Using Group Functions

Whenever you use a mixture of individual items (DEPARTMENT ID) and group functions (COUNT)
in the same SELECT statement, you must include a GROUP BY clause that specifies the individual
items (in this case, DEPARTMENT ID). If the GROUP BY clause is missing, then the error message

“not a single-group group function” appears and an asterisk (*) points to the offending column. You
can correct the error in the first example in the slide by adding the GROUP BY clause:

v

SELECT department id, count (last name)
FROM employees
GROUP BY department id;

Any column or expression in the SELECT list that is not an aggregate function must be in the GROUP
BY clause. In the second example in the slide, job_id is neither in the GROUP BY clause nor is it
being used by a group function, so there is a “not a GROUP BY expression” error. You can correct the
error in the second slide example by adding job id in the GROUP BY clause.

SELECT department id, job_id, COUNT (last name)

FROM employees

GROUP BY department id, job_ id;

Oracle Database 11g: SQL Fundamentals| 5-19

lllegal Queries
Using Group Functions

* You cannot use the WHERE clause to restrict groups.
* You use the HAVING clause to restrict groups.
* You cannot use group functions in the WHERE clause.

FROM employees
WHERE AVG (salary) > 8000
GROUP BY department id;

SELECT department id, AVG(salary)

"ORE-00939: group function is not allowed herec

r Anerror was encountered performing the requested
aperation:

ORA-00934; group function is not allowed here
00934, 00000 - "group function iz not allowed here!
*oaLse

8 ctiar:

Error &t Line:3 Calumn:9

Lo d

Cannot use the
WHERE clause to

restrict groups

Copyright © 2009, Oracle. All rights reserved.

lllegal Queries Using Group Functions (continued)

The WHERE clause cannot be used to restrict groups. The
slide results in an error because it uses the WHERE clause

SELECT statement in the example in the
to restrict the display of the average salaries

of those departments that have an average salary greater than $8,000.

However, you can correct the error in the example by using the HAVING clause to restrict groups:
SELECT department id, AVG(salary)

FROM employees
GROUP BY department id
HAVING AVG (salary) > 8000;

DEPARTMENT_ID BVGISALARY)

1 a0 193533.333333333333333...
2 20

3 110 1

4

g0 10033.333333335335333333. .

9500
130

Oracle Database 11g: SQL Fundamentals| 5 -20

Restricting Group Results

EMPLOYEES
DEPARTMENT ID | SALARY
1 10 4400
2 20 | 1z000
g 20 B000
4 a0 800 The maximum salary per
5 50 2500 department when it is
o =0 2600 greater than $10,000
7 50 3100
5 - 500 DEPARTMENT D ([Max(SALARY) |
. - 4200 1 20 13000
10 g0 F000 z a0 1000
" e 2000 3 a0 24000
12 g0 11000 # 1o 12000
13 a0 10500
&0 &500
15 110 8300
19 110
20 rrully 7000

Copyright © 2009, Oracle. All rights reserved.

Restricting Group Results

You use the HAVING clause to restrict groups in the same way that you use the WHERE clause to
restrict the rows that you select. To find the maximum salary in each of the departments that have a
maximum salary greater than $10,000, you need to do the following:

1. Find the average salary for each department by grouping by department number.

2. Restrict the groups to those departments with a maximum salary greater than $10,000.

Oracle Database 11g: SQL Fundamentals | 5 - 21

Restricting Group Results
with the EAVING Clause

When you use the HAVING clause, the Oracle server restricts
groups as follows:

1. Rows are grouped.
2. The group function is applied.
3. Groups matching the HAVING clause are displayed.

SELECT column, group function
FROM table
[WHERE condition]

[GROUP BY group by expression]
| [HAVING group condition] |
[ORDER BY column] ;

Copyright © 2009, Oracle. All rights reserved.

Restricting Group Results with the HAVING Clause

You use the HAVING clause to specify the groups that are to be displayed, thus further restricting the
groups on the basis of aggregate information.

In the syntax, group condition restricts the groups of rows returned to those groups for which
the specified condition is true.

The Oracle server performs the following steps when you use the HAVING clause:
1. Rows are grouped.
2. The group function is applied to the group.
3. The groups that match the criteria in the HAVING clause are displayed.

The HAVING clause can precede the GROUP BY clause, but it is recommended that you place the
GROUP BY clause first because it is more logical. Groups are formed and group functions are
calculated before the HAVING clause is applied to the groups in the SELECT list.

Oracle Database 11g: SQL Fundamentals | 5 -22

Using the HAVING Clause

SELECT department id, MAX(salary)
FROM employees

GROUP BY department id

HAVING _ MAX (salary)>10000];

H DEPARTMENTJD|H MAN(SALARY)
1 a0 24000
2 20 13000
3 110 12000
4 g0 11000

Copyright © 2009, Oracle. All rights reserved.

Using the HAVING Clause

The example in the slide displays the department numbers and maximum salaries for those
departments with a maximum salary greater than $10,000.

You can use the GROUP BY clause without using a group function in the SELECT list. If you restrict
rows based on the result of a group function, you must have a GROUP BY clause as well as the
HAVING clause.

The following example displays the department numbers and average salaries for those departments
with a maximum salary greater than $10,000:

SELECT department id, AVG(salary)

FROM employees

GROUP BY department id

HAVING max (salary)>10000;

DEPARTMENT IO Bl avGrsaLsRY)

g 90 19333.333333333333333...
20 3500
110 10150
50 10033.333333333333333...

—

£ L R

Oracle Database 11g: SQL Fundamentals | 5 -23

Using the HAVING Clause

SELECT job id, SUM(salary) PAYROLL
FROM employees

WHERE job id NOT LIKE 'S%REP%'
GROUP BY job id

[HAVING SUM(salary) > 13000 |

ORDER BY SUM(salary) ;

1050 [PavROLL

1 IT_PROG 19200
2 AD_PRES 24000
3 AD_WP 34000

Copyright © 2009, Oracle. All rights reserved.

Using the HAVING Clause (continued)

The example in the slide displays the job ID and total monthly salary for each job that has a total
payroll exceeding $13,000. The example excludes sales representatives and sorts the list by the total
monthly salary.

Oracle Database 11g: SQL Fundamentals | 5 - 24

Lesson Agenda

» Group functions:
— Types and syntax
— Use AVG, SUM, MIN, MAX, COUNT
— Use DISTINCT keyword within group functions
— NULL values in a group function
* Grouping rows:
— GROUP BY clause
— HAVING clause

* Nesting group functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 5 - 25

Nesting Group Functions

Display the maximum average salary:

SELECT |MAX (AVG(salary))|
FROM employees
GROUP BY department id;

MAKAVGSALARYT)
1 19333.3333333333333333333333333333333333

Copyright © 2009, Oracle. All rights reserved.

Nesting Group Functions

Group functions can be nested to a depth of two functions. The example in the slide calculates the
average salary for each department id and then displays the maximum average salary.

Note that GROUP BY clause is mandatory when nesting group functions.

Oracle Database 11g: SQL Fundamentals | 5 - 26

Quiz

Identify the guidelines for group functions and the GROUP BY
clause.

1. You cannot use a column alias in the GROUP BY clause.

2. The GROUP BY column must be in the SELECT clause.

3. By using a WHERE clause, you can exclude rows before
dividing them into groups.

4. The GROUP BY clause groups rows and ensures order of
the result set.

5. If you include a group function in a SELECT clause, you
cannot select individual results as well.

Copyright © 2009, Oracle. All rights reserved.

Answer: 1, 3

Oracle Database 11g: SQL Fundamentals | 5 -27

Summary

In this lesson, you should have learned how to:

« Use the group functions COUNT, MAX, MIN, SUM, and AVG
* Write queries that use the GROUP BY clause

* Write queries that use the HAVING clause

SELECT column, group function
FROM table
[WHERE condition]

[GROUP BY group by expression]
[HAVING group condition]
[ORDER BY column] ;

Copyright © 2009, Oracle. All rights reserved.

Summary

There are several group functions available in SQL, such as:
AVG, COUNT, MAX, MIN, SUM, STDDEV, and VARIANCE

You can create subgroups by using the GROUP BY clause. Further, groups can be restricted using the
HAVING clause.

Place the HAVING and GROUP BY clauses after the WHERE clause in a statement. The order of the
GROUP BY and HAVING clauses following the WHERE clause is not important. Place the ORDER BY
clause at the end.

The Oracle server evaluates the clauses in the following order:
1. If the statement contains a WHERE clause, the server establishes the candidate rows.
2. The server identifies the groups that are specified in the GROUP BY clause.
3. The HAVING clause further restricts result groups that do not meet the group criteria in the
HAVING clause.

Note: For a complete list of the group functions, see Oracle Database SOL Language Reference 11g,
Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals | 5 -28

Practice 5: Overview

This practice covers the following topics:
* Writing queries that use the group functions
« Grouping by rows to achieve more than one result
» Restricting groups by using the HAVING clause

Copyright © 2009, Oracle. All rights reserved.

Practice 5: Overview

At the end of this practice, you should be familiar with using group functions and selecting groups of
data.

Oracle Database 11g: SQL Fundamentals | 5 -29

Practice 5

Determine the validity of the following three statements. Circle either True or False.

1. Group functions work across many rows to produce one result per group.
True/False

2. Group functions include nulls in calculations.
True/False

3. The WHERE clause restricts rows before inclusion in a group calculation.
True/False

The HR department needs the following reports:

4. Find the highest, lowest, sum, and average salary of all employees. Label the columns
as Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest
whole number. Save your SQL statement as 1ab_05 04 .sqgl. Run the query.

1

Maxirmum

Minimum S

Average

24000

2200 173500

gria

5. Modify the query in 1ab_05_ 04 .sqgl to display the minimum, maximum, sum, and average
salary for each job type. Resave lab 05 04.sqgl as lab 05 05.sqgl. Run the statement

inlab 05 05.sqgl.

L) L I o

10
11
12

Surﬂ ﬁferage

JOB_|D Mazcimum (B Minimum

IT_PROG 9000 4200 19200
AC_MGR 12000 12000 12000
AC_ACCOUNT 5300 5300 8300
ST_MAN 5800 5500 5800
AD_ASST 4400 4400 4400
AD_WP 17000 17000 34000
Sa_MAN 10500 10500 10500
MK _MAN 13000 13000 13000
AD_PRES 24000 24000 24000
S4_REP 11000 7000 26600
M¥_REP 5000 FOO0 6000
ST_CLERK 3500 2500 14700

G400
12000
G300
5500
4400
17000
1000
13000
24000
el
Go00
2925

Oracle Database 11g: SQL Fundamentals| 5 -30

Practice 5 (continued)

6. Write a query to display the number of people with the same job.

oD - m o B W k=

11
12

B swoeic (B couure

AC_ACCOUNT
AC_MGR
AD_ASST
AD_PRES
AD WP
IT_PROG
hAk,_hA A
hk_REF
S
SA_REP
ST_CLERK
ST_MAaN

’
’
1
1
2
3
1
1
1
3
4
1

Generalize the query so that the user in the HR department is prompted for a job title. Save the script
to a file named 1ab 05 06.sgl. Run the query. Enter IT PROG when prompted.

B JoE D

B coumt

1 IT_PROG

3

7. Determine the number of managers without listing them. Label the column as Number of
Managers. Hint: Use the MANAGER _ID column to determine the number of managers.

Mumber of Managers

g

8. Find the difference between the highest and lowest salaries. Label the column DIFFERENCE.

@ DFFERENCE |
21500

Oracle Database 11g: SQL Fundamentals | 5 - 31

Practice 5 (continued)
If you have time, complete the following exercises:

9. Create a report to display the manager number and the salary of the lowest-paid employee for
that manager. Exclude anyone whose manager is not known. Exclude any groups where the
minimum salary is $6,000 or less. Sort the output in descending order of salary.

mansczER_ D | MrsaLaRY)

1 102 000
2 205 G300
3 149 oo

If you want an extra challenge, complete the following exercises:

10. Create a query to display the total number of employees and, of that total, the number of
employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

ToTal (B 1295 (Bl 1998 B 1997 |[B 190a

1 20 1 2 2 3

11. Create a matrix query to display the job, the salary for that job based on department number,
and the total salary for that job, for departments 20, 50, 80, and 90, giving each column an

appropriate heading.
Jok Dept 20 (B Dept 50 | Depteo (B Dept QDTE Tatal
1 IT_PROG (i) (rull) (ul) nul) 19200
2 AC_MGR (i) (rull) (il (ull) 12000
3 AC_ACCOUNT () (raully (il (rulll &300
4 ST_MAN (i) 5500 (rull) (nulll 5800
5 AD_ASST (i) (riull) (riull) (null) 4400
E AD_WP (riuil) (rauil) (il 34000 34000
7 SA_MAN (il raully 10500 (nulll 10500
5 MH_MAN 13000 (raull) (il (ull) 13000
9 AD_PRES (i) (rull) (il 24000 24000
10 & _REP (L) rally 19600 (null) 28800
11 Mk_REP BO0D (raully (il (rulll EO00
| 12 ST_CLERK (i) 11700 (il (null) 11700

Oracle Database 11g: SQL Fundamentals | 5 - 32

Displaying Data
from Multiple Tables

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Write SELECT statements to access data from more than
one table using equijoins and nonequijoins

« Join a table to itself by using a self-join

* View data that generally does not meet a join condition by
using OUTER joins

* Generate a Cartesian product of all rows from two or more
tables

Copyright © 2009, Oracle. All rights reserved.

Objectives

This lesson explains how to obtain data from more than one table. A join is used to view information
from multiple tables. Therefore, you can join tables together to view information from more than one
table.

Note: Information on joins is found in the section on SOQL Queries and Subqueries: Joins in
Oracle Database SQL Language Reference 11g, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals | 6 -2

Lesson Agenda

« Types of JOINS and its syntax
« Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
 OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 6 -3

Obtaining Data from Multiple Tables

Copyright © 2009, Oracle. All rights reserved.

EMPLOYEES DEPARTMENTS
|8 ewpiovee p|B Last_name | oEparTMENT D pEPsRTMENT_ DB DEPARTMENT mamE 8 LoCATION D
1 100King ao 1 10 & cministration 1700
2 101 Hockhar a0 2 200Marketing 1800
3 104 De Haan 90] S0 =hipping 1300
4 solIT 1400
il 5 §0Zales 2500
15 202 ay 20 B agfExecutive 1700
i 205 Higaing 1 7 110} &ccounting 1700
0 206 Gietz i l l 5 190} Contracting 1700
EmPLOVEE_ID | DEPARTMENT_ID (B DEPARTMENT MamE
1 200 10 Administration
2 2Mm 20 Marketing
3] 202 20 Marketing
4 124 50 Shipping
5 144 20 Shipping
.
15 205 110 Accourting
19 208 110 Accounting

Obtaining Data from Multiple Tables

Sometimes you need to use data from more than one table. In the example in the slide, the report

displays data from two separate tables:
» Employee IDs exist in the EMPLOYEES table.
* Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.
* Department names exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables, and access data

from both of them.

Oracle Database 11g: SQL Fundamentals| 6 -4

Types of Joins

Joins that are compliant with the SQL:1999 standard include
the following:
* Natural joins:
— NATURAL JOIN clause
— USING clause
— ON clause
* OUTER joins:
— LEFT OUTER JOIN
— RIGHT OUTER JOIN
— FULL OUTER JOIN

« Crossjoins

Copyright © 2009, Oracle. All rights reserved.

Types of Joins

To join tables, you can use a join syntax that is compliant with the SQL:1999 standard.

Note
» Before the Oracle9i release, the join syntax was different from the American National Standards
Institute (ANSI) standards. The SQL:1999—compliant join syntax does not offer any
performance benefits over the Oracle-proprietary join syntax that existed in the prior releases.
For detailed information about the proprietary join syntax, see Appendix C: Oracle Join Syntax.
» The following slide discusses the SQL:1999 join syntax.

Oracle Database 11g: SQL Fundamentals| 6 -5

Joining Tables Using SQL:1999 Syntax

Use a join to query data from more than one table:

SELECT tablel.column, table2.column
FROM tablel
[NATURAL JOIN table2] |
[JOIN table2 USING (column name)] |
[JOIN table2
ON (tablel.column name = table2.column name)] |
[LEFT | RIGHT | FULL OUTER JOIN table2
ON (tablel.column name = table2.column name)] |
[CROSS JOIN table2];

Copyright © 2009, Oracle. All rights reserved.

Joining Tables Using SQL:1999 Syntax

In the syntax:
tablel.column denotes the table and the column from which data is retrieved

NATURAL JOIN joins two tables based on the same column name
JOIN table2 USING column name performs an equijoin based on the column name

JOIN table2 ON tablel.column name = table2.column_ name performs an equijoin
based on the condition in the ON clause

LEFT/RIGHT/FULL OUTER is used to perform OUTER joins

CROSS JOIN returns a Cartesian product from the two tables
For more information, see the section titled SELECT in Oracle Database SQL Language Reference
11g, Release I (11.1).

Oracle Database 11g: SQL Fundamentals| 6 -6

Qualifying Ambiguous
Column Names

« Use table prefixes to qualify column names that are in
multiple tables.

* Use table prefixes to improve performance.
» Instead of full table name prefixes, use table aliases.

« Table alias gives a table a shorter name:
— Keeps SQL code smaller, uses less memory

* Use column aliases to distinguish columns that have
identical names, but reside in different tables.

Copyright © 2009, Oracle. All rights reserved.

Qualifying Ambiguous Column Names

When joining two or more tables, you need to qualify the names of the columns with the table name
to avoid ambiguity. Without the table prefixes, the DEPARTMENT ID column in the SELECT list
could be from either the DEPARTMENTS table or the EMPLOYEES table. It is necessary to add the
table prefix to execute your query. If there are no common column names between the two tables,
there is no need to qualify the columns. However, using the table prefix improves performance,
because you tell the Oracle server exactly where to find the columns.

However, qualifying column names with table names can be time consuming, particularly if the table
names are lengthy. Instead, you can use table aliases. Just as a column alias gives a column another
name, a table alias gives a table another name. Table aliases help to keep SQL code smaller,
therefore using less memory.

The table name is specified in full, followed by a space and then the table alias. For example, the
EMPLOYEES table can be given an alias of e, and the DEPARTMENTS table an alias of d.

Guidelines
» Table aliases can be up to 30 characters in length, but shorter aliases are better than longer ones.
+ If atable alias is used for a particular table name in the FROM clause, then that table alias must
be substituted for the table name throughout the SELECT statement.
» Table aliases should be meaningful.
» The table alias is valid for only the current SELECT statement.

Oracle Database 11g: SQL Fundamentals| 6 -7

Lesson Agenda

 Types of JOINS and its syntax
* Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
 OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 6 -8

Creating Natural Joins

« The NATURAL JOIN clause is based on all columns in the
two tables that have the same name.

* It selects rows from the two tables that have equal values
in all matched columns.

* If the columns having the same names have different data
types, an error is returned.

Copyright © 2009, Oracle. All rights reserved.

Creating Natural Joins

You can join tables automatically based on the columns in the two tables that have matching data
types and names. You do this by using the NATURAL JOIN keywords.

Note: The join can happen on only those columns that have the same names and data types in both
tables. If the columns have the same name but different data types, then the NATURAL JOIN syntax
causes an error.

Oracle Database 11g: SQL Fundamentals| 6 -9

Retrieving Records with Natural Joins

SELECT department id, department name,
location id, city

FROM departments

NATURAL JOIN locations

~e

DEPARTMENT_ID | DEPARTMEMT _MAME |§| LOCATION_ID | CIT
1 GOIT 1400 Southlake
2 S0 Shipping 1500 South San Francisco
3 10 Administration 1700 Seattle
4 90 Executive 1700 Seattle
] 110 Accounting 1700 Sesttle
E 180 Contracting 1700 Seattle
7 20 Marketing 1800 Toranto
g g0 Sales 2500 Cxcford

Copyright © 2009, Oracle. All rights reserved.

Retrieving Records with Natural Joins
In the example in the slide, the LOCATIONS table is joined to the DEPARTMENT table by the
LOCATION_ID column, which is the only column of the same name in both tables. If other common
columns were present, the join would have used them all.
Natural Joins with a WHERE Clause
Additional restrictions on a natural join are implemented by using a WHERE clause. The following
example limits the rows of output to those with a department ID equal to 20 or 50:

SELECT department id, department name,
location id, city

FROM departments

NATURAL JOIN locations

WHERE department id IN (20, 50);

Oracle Database 11g: SQL Fundamentals| 6 -10

Creating Joins with the UsING Clause

« If several columns have the same names but the data
types do not match, use the USING clause to specify the

columns for the equijoin.

* Use the USING clause to match only one column when
more than one column matches.

 The NATURAL JOIN and USING clauses are mutually
exclusive.

Copyright © 2009, Oracle. All rights reserved.

Creating Joins with the USING Clause

Natural joins use all columns with matching names and data types to join the tables. The USING
clause can be used to specify only those columns that should be used for an equijoin.

Oracle Database 11g: SQL Fundamentals | 6 - 11

Joining Column Names

EMPLOYEES DEPARTMENTS

EMPLOVEE_ID ||§ DEPARTMENT_ID ’I DEPARTMENT_ID [DEPARTMENT_namE
100 a0 1 10 Administration
101 ad 2 20 Marketing
102 o0 3 S0 Shipping
103 =1 4 » GBOIT
104 B0 = » G0 Sales
107 B0 G a0 Executive
124 a0 v 110 Accounting
141 a0 g 190 Contracting
142 a0
143 =0 I
144 a0
1439 g0
174 80 Primary key
176 a0

Foreign key

Copyright © 2009, Oracle. All rights reserved.

Joining Column Names

To determine an employee’s department name, you compare the value in the DEPARTMENT ID
column in the EMPLOYEES table with the DEPARTMENT _ID values in the DEPARTMENTS table.
The relationship between the EMPLOYEES and DEPARTMENTS tables is an equijoin; that is, values
in the DEPARTMENT _ID column in both the tables must be equal. Frequently, this type of join
involves primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.

Oracle Database 11g: SQL Fundamentals| 6 -12

Retrieving Records with the UsING Clause

SELECT employee id, last name,
location id, department id

FROM employees JOIN departments

USING (departmentﬁid) ;

EmPLovEED (@ LasT_mame |8 LocaTionn |B DEPARTMENT D

1 200 Whslen 1700 10
2 201 Hartstein 1800 20
3 202 Fay 1800 20
4 124 Mourgos 1500 50
] 144 Vargas 1500 a0
B 143 Matos 1500 50
7 142 Dawies 1800 50
8 141 Rais 1500 50
g 107 Lorentz 1400 &0
10 104 Ernst 1400 B0
IRE 205 Higgins 1700 110]

Copyright © 2009, Oracle. All rights reserved.

Retrieving Records with the usiNG Clause

In the example in the slide, the DEPARTMENT _ID columns in the EMPLOYEES and
DEPARTMENTS tables are joined and thus the LOCATION ID of the department where an
employee works is shown.

Oracle Database 11g: SQL Fundamentals| 6 -13

Using Table Aliases with the UsING Clause

* Do not qualify a column that is used in the USING clause.

« If the same column is used elsewhere in the SQL
statement, do not alias it.

SELECT l.city, d.department name

FROM locations 1 JOIN departments d
USING (location id)

WHERE d.location id = 1400;

"ORA-Z5154: column part of USING clause cannot have qualifierc E

o Anerror was encountered performing the requested operation;

ORA-25154; column part of USING clause cannat have gualifier

2515400000 - "colutmn part of USING clause cannot have gualifisr”

*ausze: Columns that are used for a named-join (either & MATURAL join
or a join with a USING clauze) cannot have an explicit qualifier.

*&ction; Remowe the qualifier.

Error at Line:4 Colutnn:

Copyright © 2009, Oracle. All rights reserved.

Using Table Aliases with the USING clause

When joining with the USING clause, you cannot qualify a column that is used in the USING clause
itself. Furthermore, if that column is used anywhere in the SQL statement, you cannot alias it. For
example, in the query mentioned in the slide, you should not alias the location id column in the
WHERE clause because the column is used in the USING clause.

The columns that are referenced in the USING clause should not have a qualifier (table name or
alias) anywhere in the SQL statement. For example, the following statement 1s valid:

SELECT 1l.city, d.department name

FROM locations 1 JOIN departments d USING (location id)

WHERE location id = 1400;

Because, other columns that are common in both the tables, but not used in the USING clause, must
be prefixed with a table alias otherwise you get the “column ambiguously defined” error.

In the following statement, manager id is present in both the employees and departments
table and if manager id is not prefixed with a table alias, it gives a “column ambiguously
defined” error.

The following statement is valid:
SELECT first name, d.department name, d.manager id

FROM employees e JOIN departments d USING (department id)
WHERE department id = 50;

Oracle Database 11g: SQL Fundamentals | 6 - 14

Creating Joins with the oN Clause

« The join condition for the natural join is basically an
equijoin of all columns with the same name.

« Use the ON clause to specify arbitrary conditions or specify
columns to join.

« The join condition is separated from other search
conditions.

 The ON clause makes code easy to understand.

Copyright © 2009, Oracle. All rights reserved.

Creating Joins with the oN Clause

Use the ON clause to specify a join condition. With this, you can specify join conditions separate
from any search or filter conditions in the WHERE clause.

Oracle Database 11g: SQL Fundamentals| 6 -15

Retrieving Records with the oN Clause

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location id
FROM employees e JOIN departments d

ON e.department id = d.department id)l;

EMPLOYEE_ID | LAST_MAME | DEPARTMWENT _ID I DEPARTMEMT _ID_1 ﬁ_l LS A TR _ID

1 200 VWhalen 1 D. 0 1700
2 201 Hartstein 20 20 1800
3 202 Fay 20 20 1800
4 124 Mourgos a0 a0 1500
5 144 Vargas a0 a0 1500
g 143 Matos =0 S0 1500
7 142 Davies =0 S0 1500
a 141 Rajs ab a0 1500
g 107 Lorentz &0 [=li] 1400
10 104 Ernst &0 B0 1400

Copyright © 2009, Oracle. All rights reserved.

Retrieving Records with the oN Clause
In this example, the DEPARTMENT ID columns in the EMPLOYEES and DEPARTMENTS table are
joined using the ON clause. Wherever a department ID in the EMPLOYEES table equals a department
ID in the DEPARTMENTS table, the row is returned. The table alias is necessary to qualify the
matching column_names.

You can also use the ON clause to join columns that have different names. The parenthesis around
the joined columns as in the slide example, (e.department id = d.department id) is
optional. So, even ON e.department id = d.department id will work.

Note: SQL Developer suffixes a ¢ 1’ to differentiate between the two department ids.

Oracle Database 11g: SQL Fundamentals| 6 -16

Creating Three-Way Joins with
the oN Clause

SELECT employee id, city, department name
FROM employees e

JOIN departments d
ON d.department id = e.department id
JOIN locations 1
ON d.location id = l.location id;
— —
¥ ewrLoveen @ crv (B DEPARTMENT MaME

1 100 Sesttle Executive

2 101 Sesttle Executive

3 102 Sesttle Executive

4 103 Southlake I

5 104 Southlake IT

B 107 Southlake I

7 124 South Zan Francisco Shipping

g 141 South San Francisco Shipping

Copyright © 2009, Oracle. All rights reserved.

Creating Three-Way Joins with the oN Clause

A three-way join is a join of three tables. In SQL:1999—compliant syntax, joins are performed from
left to right. So, the first join to be performed is EMPLOYEES JOIN DEPARTMENTS. The first join
condition can reference columns in EMPLOYEES and DEPARTMENTS but cannot reference columns
in LOCATIONS. The second join condition can reference columns from all three tables.

Note: The code example in the slide can also be accomplished with the USING clause:

SELECT e.employee id, l.city, d.department name
FROM employees e

JOIN departments d

USING (department id)

JOIN locations 1

USING (location id)

Oracle Database 11g: SQL Fundamentals| 6 -17

Applying Additional Conditions
to a Join

Use the AND clause or the WHERE clause to apply additional
conditions:

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location id
FROM employees e JOIN departments d

ON (e.department id = d.department id)
AND e.manager id = 1409 |;
Or

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location id

FROM employees e JOIN departments d

ON (e.department id = d.department id)

WHERE e.ma;lager_id = 149|;

Copyright © 2009, Oracle. All rights reserved.

Applying Additional Conditions to a Join

You can apply additional conditions to the join.

The example shown performs a join on the EMPLOYEES and DEPARTMENTS tables and, in

addition, displays only employees who have a manager ID of 149. To add additional conditions to
the ON clause, you can add AND clauses. Alternatively, you can use a WHERE clause to apply

additional conditions.

EMPLOVEEID | LasT mame [F DEF‘.-'J-RTr-.-lENT_ID! DEPARTMENT ID_1 LOCATION D
1 174 Sbel a0 a0 2500
2 176 Taylor a0 a0 2500

Oracle Database 11g: SQL Fundamentals| 6 -18

Lesson Agenda

 Types of JOINS and its syntax
* Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
 OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 6 -19

Joining a Table to Itself

EMPLOYEES (WORKER)

EMPLOYEE_|D | LAST_NAME| MANAGER_|D|

100 King

101 Kachhar
102 De Haan
103 Hunald
104 Ernst
107 Lorentz

141 Rajz
142 Davies
143 Matos

[= 7 L B N

-y
]

(]
100
100
102
103
103

124 Mourgos 100

124
124
124

EMPLOYEES (MANAGER)

EMPLOVEEID | LaST_NamE
100 King
101 Kachhar
102 De Haan
103 Hunald
104 Ernst
107 Lorertz

124 Mourgos
141 Rajs
142 Davies
143 Mataz

MANAGER ID in the WORKER table is equal to
EMPLOYEE ID in the MANAGER table.

Copyright © 2009, Oracle. All rights reserved.

Joining a Table to Itself

Sometimes you need to join a table to itself. To find the name of each employee’s manager, you need
to join the EMPLOYEES table to itself, or perform a self-join. For example, to find the name of

Lorentz’s manager, you need

to:

* Find Lorentz in the EMPLOYEES table by looking at the LAST NAME column

* Find the manager number for Lorentz by looking at the MANAGER ID column. Lorentz’s

manager number is 103.

* Find the name of the manager with EMPLOYEE_ID 103 by looking at the LAST NAME column.

Hunold’s employee number is 103, so Hunold is Lorentz’s manager.

In this process, you look in the table twice. The first time you look in the table to find Lorentz in the
LAST_ NAME column and the MANAGER ID value of 103. The second time you look in the

EMPLOYEE_ID column to find 103 and the LAST NAME column to find Hunold.

Oracle Database 11g: SQL Fundamentals | 6 - 20

Self-Joins Using the ON Clause

SELECT worker.last name emp, manager.last name mgr
FROM employees worker JOIN employees manager

ON (worker.manager id = manager.employee id);

EMP B mor

1 Hunold De Haan

2 Fay Hartstein

3 Gietz Higains

4 Lorentz Hunold

5 Ernst Hunald

E Ilotkey King

7 Mourgos King

g Kochhar King

9 Hartstein King

10 De Haan King

Copyright © 2009, Oracle. All rights reserved.

Self-Joins Using the oN Clause

The ON clause can also be used to join columns that have different names, within the same table or in
a different table.

The example shown is a self-join of the EMPLOYEES table, based on the EMPLOYEE_ID and
MANAGER_ID columns.

Note: The parenthesis around the joined columns as in the slide example, (e.manager id =
m.employee id) is optional. So, even ON e.manager id = m.employee id will work.

Oracle Database 11g: SQL Fundamentals | 6 - 21

Lesson Agenda

 Types of JOINS and its syntax
« Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
 OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 6 - 22

Nonequijoins

EMPLOYEES JOB GRADES
LasT_nave| B saLary
1 King 24000 oRapE_LEVEL|E LowesT saL | HGHEST SaL
2 Kochhar 17000 14 1000 29499
3 De Haan 17000 2B 3000 5939
4 Hurnald Q000 C G000 934939
5 Ernst =] 4D 10000 145895
E Larentz 4200 3 E 15000 243599
T Mourgos 500 G F 25000 40000
5 Rajz 3500
9 Davi 3100 .
v JOB_GRADES table defines the
05 2600 —
LOWEST SAL and HIGHEST SAL range
Py of values for each GRADE_LEVEL.
InoinE 12000 _
S i Hence, the GRADE LEVEL column can
be used to assign grades to each
employee.

Copyright © 2009, Oracle. All rights reserved.

Nonequijoins
A nonequijoin is a join condition containing something other than an equality operator.
The relationship between the EMPLOYEES table and the JOB_GRADES table is an example of a
nonequijoin. The SALARY column in the EMPLOYEES table ranges between the values in the
LOWEST SAL and HIGHEST SAL columns of the JOB_GRADES table. Therefore, each employee

can be graded based on their salary. The relationship is obtained using an operator other than the
equality (=) operator.

Oracle Database 11g: SQL Fundamentals | 6 - 23

Retrieving Records
with Nonequijoins

SELECT e.last name, e.salary, j.grade level
FROM employees e JOIN job grades j

ON e.;aléry

BETWEEN j.lowest sal AND j.highest sal

~e

LasT_navelf salary | oRADE_LEVEL
1 Wargas 2500 A&
2 Matos 2600 &
3 Davies F1006
4 Rajs 3500 B
5 Lorentz 4200 B
B Whalen 4400 B
7 Mourgos 5300 B
8 Emnst £000 C
g Fay £000 C
10 Grart 7000 C

Copyright © 2009, Oracle. All rights reserved.

Retrieving Records with Nonequijoins

The slide example creates a nonequijoin to evaluate an employee’s salary grade. The salary must be
between any pair of the low and high salary ranges.

It is important to note that all employees appear exactly once when this query is executed. No
employee is repeated in the list. There are two reasons for this:

* None of the rows in the JOB_GRADES table contain grades that overlap. That is, the salary
value for an employee can lie only between the low salary and high salary values of one of the
rows in the salary grade table.

» All of the employees’ salaries lie within the limits provided by the job grade table. That is, no
employee earns less than the lowest value contained in the LOWEST SAL column or more than
the highest value contained in the HIGHEST SAL column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest. Remember
to specify the low value first and the high value last when using the BETWEEN condition. The Oracle
server translates the BETWEEN condition to a pair of AND conditions. Therefore, using BETWEEN has
no performance benefits, but should be used only for logical simplicity.

Table aliases have been specified in the slide example for performance reasons, not because of
possible ambiguity.

Oracle Database 11g: SQL Fundamentals | 6 - 24

Lesson Agenda

 Types of JOINS and its syntax
« Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
* OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 6 - 25

Returning Records with No Direct Match
Using OUTER Joins

DEPARTMENTS Equijoin with EMPLOYEES
DEPARTMENT_MAME [DEPARTMENT ID | DEPARTMENT D |6 LaST_NaME
Administration 10 1 90 King
Marketing 20 2 90 Kochhar
Shipping a0 3 90 De Haan
I B0 4 B0 Hunold
Sales 80 5 B0 Ernst
Execitive a0 5] B0 Lorerntz
Accounting 110 7 20 Mourgos
Contracting I 180 g S0 Rajs

9 50 Davies
10 50 Matas
There are no employees -
in department 190. 18 110 Higgins
18 110 Gietz
Employee “Grant” has I
not been assigned a

department ID.

Copyright © 2009, Oracle. All rights reserved.

Returning Records with No Direct Match Using OUTER Joins

If a row does not satisfy a join condition, the row does not appear in the query result.
In the slide example, a simple equijoin condition is used on the EMPLOYEES and DEPARTMENTS

tables to return the result on the right. The result set does not contain the following:

» Department ID 190, because there are no employees with that department ID recorded in the
EMPLOYEES table

* The employee with the last name of Grant, because this employee has not been assigned a
department ID

To return the department record that does not have any employees, or employees that do not have an
assigned department, you can use an OUTER join.

Oracle Database 11g: SQL Fundamentals | 6 - 26

INNER Versus OUTER Joins

* In SQL:1999, the join of two tables returning only matched
rows is called an INNER join.

* Ajoin between two tables that returns the results of the
INNER join as well as the unmatched rows from the left (or
right) table is called a left (or right) OUTER join.

* Ajoin between two tables that returns the results of an
INNER join as well as the results of a left and right join is a
full OUTER join.

Copyright © 2009, Oracle. All rights reserved.

INNER Versus OUTER Joins

Joining tables with the NATURAL JOIN, USING, or ON clauses results in an INNER join. Any

unmatched rows are not displayed in the output. To return the unmatched rows, you can use an
OUTER join. An OUTER join returns all rows that satisfy the join condition and also returns some or

all of those rows from one table for which no rows from the other table satisfy the join condition.

There are three types of OUTER joins:
o LEFT OUTER
e« RIGHT OUTER
« FULL OUTER

Oracle Database 11g: SQL Fundamentals | 6 - 27

LEFT OUTER JOIN

SELECT e.last name, e.department id, d.department name
FROM employees e| LEFT OUTER JOIN|departments d
ON (e.department id = d.department id) ;

LasT_tave 8 DEPARTMENT 1D (B DEPARTMENT MAME
1 Whalen 10 Administration
2 Fay 20 Marketing
3 Hartstein 20 Marketing
4 “argas S0 Shipping
5 Matos 50 Shipping
17 King 90 Executive
18 Gietz 110 Accounting
19 Higgins 110 Accounting
20 Grant Lrnll) (rull)

Copyright © 2009, Oracle. All rights reserved.

LEFT OUTER JOIN

This query retrieves all the rows in the EMPLOYEES table, which is the left table, even if there is no
match in the DEPARTMENTS table.

Oracle Database 11g: SQL Fundamentals | 6 - 28

RIGHT OUTER JOIN

SELECT e.last name, d.department id, d.department name
FROM employees e|RIGHT OUTER JOIN|departments d

ON (e.department id = d.department id) ;
LasT_nanE |[{ oerarTMENT 1o [l DEPARTMENT NamE
1 Whalen 10 Administration
2 Hartstein 20 Marketing
3 Fay 20 Marketing
4 hourgos 50 Shipping
18 Gietz 110 Accounting
189 Higgins 110 Accounting
| 20 grun 180 Cortracting |

Copyright © 2009, Oracle. All rights reserved.

RIGHT OUTER JOIN

This query retrieves all the rows in the DEPARTMENTS table, which is the table at the right, even if
there is no match in the EMPLOYEES table.

Oracle Database 11g: SQL Fundamentals | 6 - 29

FULL OUTER JOIN

SELECT e.last name, d.department id, d.department name
FROM employees e|FULL OUTER JOIN|departments d
ON (e.department id = d.department id) ;

LasT_manE |[§ oEparTMENT 10| DEPARTMENT MaME
1 King 90 Executive
2 Kochhar 90 Executive
3 De Haan 90 Executive
4 Hunald EOIT
| 15 Grant (rully (il |
16 Whalen 10 Administration
17 Hartstein 20 Marketing
18 Fay 20 Marketing
19 Higgins 110 Accounting
20 Gistz 110 Accourting
[2t gum 180 Cortracting |

Copyright © 2009, Oracle. All rights reserved.

FULL OUTER JOIN

This query retrieves all rows in the EMPLOYEES table, even if there 1s no match in the
DEPARTMENTS table. It also retrieves all rows in the DEPARTMENTS table, even if there is no
match in the EMPLOYEES table.

Oracle Database 11g: SQL Fundamentals| 6 - 30

Lesson Agenda

« Types of JOINS and its syntax

* Natural join:
— USING clause
— ON clause
« Self-join
* Nonequiijoin
 OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
« Cartesian product
— Cross join

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 6 - 31

Cartesian Products

* A Cartesian product is formed when:
— Ajoin condition is omitted
— A join condition is invalid
— All rows in the first table are joined to all rows in the second
table

 To avoid a Cartesian product, always include a valid join
condition.

Copyright © 2009, Oracle. All rights reserved.

Cartesian Products

When a join condition is invalid or omitted completely, the result is a Cartesian product, in which all
combinations of rows are displayed. All rows in the first table are joined to all rows in the second
table.

A Cartesian product tends to generate a large number of rows and the result is rarely useful. You
should, therefore, always include a valid join condition unless you have a specific need to combine
all rows from all tables.

However, Cartesian products are useful for some tests when you need to generate a large number of
rows to simulate a reasonable amount of data.

Oracle Database 11g: SQL Fundamentals | 6 - 32

Generating a Cartesian Product

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)
EMPLOYEE_ID | LAST_NAME | DEPARTMENT_ID | DEP&RTMENT_ID | DEPARTMENT_MAME | LOCATION_ID
1 100 King g0 1 10 Administration 1700
2 1M Kochhar 90 2 20 Marketing 1800
3 102 De Haan 50 3 50 Shipping 1500
4 103 Hunold G0 4 EOIT 1400
5 80 Sales 23500
LI

,, B 90 Execiutive 1700

19 205 Higains 110 .
a0 206 Gistz 110 7 110 Accourting 1700
3 180 Cortracting 1700

v v

) empLOvEE D | DEParTMENT D [LocaTion D
Cartesian product: 1 pyo a0 1700
20 x 8 =160 rows 2 10 30 1700

3 102 a0 1700

4 103 &0 1700

159 205 110 1700

160 206 110 1700

Copyright © 2009, Oracle. All rights reserved.

Generating a Cartesian Product

A Cartesian product is generated if a join condition is omitted. The example in the slide displays the
employee last name and the department name from the EMPLOYEES and DEPARTMENTS tables.
Because no join condition was specified, all rows (20 rows) from the EMPLOYEES table are joined
with all rows (8 rows) in the DEPARTMENTS table, thereby generating 160 rows in the output.

Oracle Database 11g: SQL Fundamentals | 6 - 33

Creating Cross Joins

« The CROSS JOIN clause produces the cross-product of
two tables.

« This is also called a Cartesian product between the two
tables.

SELECT last name, department name
FROM employees
CROSS JOIN departments] ;

LasT_HaME [DEPARTMENT_MAME
1 &hel Administration
2 Davies Administration
3 De Haan Administration
4 Ernzt Administration
5 Fay Administration
159 Whalen Contracting
160 Flotkey Cortracting

Copyright © 2009, Oracle. All rights reserved.

Creating Cross Joins
The example in the slide produces a Cartesian product of the EMPLOYEES and DEPARTMENTS
tables.

Oracle Database 11g: SQL Fundamentals | 6 - 34

Quiz

The SQL:1999 standard join syntax supports the following
types of joins. Which of these join types does Oracle join syntax
support?
1. Equijoins
Nonequijoins
Left OUTER join
Right OUTER join
Full OUTER join
Self joins
Natural joins
Cartesian products

Copyright © 2009, Oracle. All rights reserved.

Answer: 1,2, 3,4,6, 8

©® NO Ok wN

Oracle Database 11g: SQL Fundamentals | 6 - 35

Summary

In this lesson, you should have learned how to use joins to
display data from multiple tables by using:

* Equijoins

* Nonequijoins

* OUTER joins

- Self-joins

» Cross joins

« Natural joins

« Full (or two-sided) OUTER joins

Copyright © 2009, Oracle. All rights reserved.

Summary

There are multiple ways to join tables.

Types of Joins
* Equijoins
» Nonequijoins
* OUTER joins
 Self-joins
» Cross joins
» Natural joins
 Full (or two-sided) OUTER joins

Cartesian Products

A Cartesian product results in the display of all combinations of rows. This is done by either omitting
the WHERE clause or by specifying the CROSS JOIN clause.
Table Aliases

« Table aliases speed up database access.

+ Table aliases can help to keep SQL code smaller by conserving memory.

» Table aliases are sometimes mandatory to avoid column ambiguity.

Oracle Database 11g: SQL Fundamentals | 6 - 36

Practice 6: Overview

This practice covers the following topics:
« Joining tables using an equijoin
« Performing outer and self-joins
* Adding conditions

Copyright © 2009, Oracle. All rights reserved.

Practice 6: Overview

This practice is intended to give you experience in extracting data from more than one table using the
SQL:1999—compliant joins.

Oracle Database 11g: SQL Fundamentals | 6 - 37

Practice 6

1. Write a query for the HR department to produce the addresses of all the departments. Use the
LOCATIONS and COUNTRIES tables. Show the location ID, street address, city, state or
province, and country in the output. Use a NATURAL JOIN to produce the results.

—

& L ka

LOCATION. ID

STREET _ADDRESS

CITY

STATE_PROWIMCE

COUNTRY _MAME

1400 2014 Jabberywocky Rd Southlake

1500 2011 Interiors Blwd
1700 2004 Charade Rd

1800 460 Bloar St. W,

2500 Magdalen Centre, The ...

Seattle
Toronto
Crcford

Texas

South San Francisco California

Wiashington
Dntaria
Crxcford

United States of America
United States of America
United States of America
Canada

United Kingdam

2. The HR department needs a report of all employees. Write a query to display the last name,
department number, and department name for all the employees.

LasT Mame B oerarTMEMT D (B DEPARTMENT MAME
1 Whalen 10 Administration
2 Hartstein 20 Marketing
3 Fay 20 Marketing
4 Davies S0 Shipping
S Wargas S0 Shipping
6 Fajz S0 Shipping
7 Mourgos S0 Shipping
g Matos S0 Shipping
9 Hunoald 60T
10 Ernst B0 1T
15 Higagins 110 Accounting
19 Gietz

110 Accounting

Oracle Database 11g: SQL Fundamentals | 6 - 38

Practice 6 (continued)

3.

The HR department needs a report of employees in Toronto. Display the last name, job,
department number, and the department name for all employees who work in Toronto.

LasT mame (B Joe o |B cerarTMENT IO Bl DEPARTMENT MAME
1 Hartztein 0 [o RV 20 Marketing
2 Fay hik,_REP 20 Marketing

Create a report to display employees’ last name and employee number along with their
manager’s last name and manager number. Label the columns Employee, Emp#, Manager,
and Mgr#, respectively. Save your SQL statement as 1ab 06 04 .sqgl. Run the query.

Employves EnP# Manager Pidgr

1 Kochhar 101 King 100
2 De Haan 102 King 100
3 Hunald 103 De Haan 102
4 Ernst 104 Hunald 103
5 Lorentz 107 Hunald 103
B Mourgos 124 King 100
7 Raj= 141 Mourgos 124
g Davies 142 Mourgos 124
9 Matoz 143 Mourgos 124
10 Yargas 144 Mourgos 124
13 Whalen 200 Kochhar 1M
16 Hartztein 201 King 100
17 Fay 202 Hartstein 201
18 Higginz 205 Wochhar 101
19 Gietz 206 Higgins 205

Oracle Database 11g: SQL Fundamentals | 6 -39

Practice 6 (continued)

5. Modify 1ab_06_04.sqgl to display all employees including King, who has no manager.
Order the results by the employee number. Save your SQL statement as 1ab 06 05.sqgl.
Run the query in 1ab 06 05.sql.

Employes EhiP# hanager e %
1 King 100 (il Crdll
2 Kochhar 101 King 100
3 e Haan 102 King 100
4 Hunold 103 De Haan 102
5 Ernst 104 Hunold 103
G Larentz 107 Hunald 103
7 Mourgos 124 King 100
g Rajs 141 Mourgos 124
9 Davies 142 Mourgos 124
10 Mato=s 143 Mourgos 124
man
15 Fay 202 Hartstein 20
19 Higginz 205 Kochhar 1M
20 Gietz 206 Higgins 205

6. Create a report for the HR department that displays employee last names, department numbers,
and all the employees who work in the same department as a given employee. Give each
column an appropriate label. Save the script to a file named 1ab 06 06.sql.

pEPARTMENT B EmPLOvEE | cOLLEAGLE |
1 20 Fay Hart=tein
2 20 Hart=tein Fay
3 S0 Davies Matos
4 a0 Davies Mourgos
o a0 Davies Fajz
B o0 Davies Wargas
7 30 Matos Davies
g S0 Matos Mourgos
9 20 Matos Fajz
10 a0 Matos Vargas
42 110 Higgins etz

Oracle Database 11g: SQL Fundamentals | 6 - 40

Practice 6 (continued)

7. The HR department needs a report on job grades and salaries. To familiarize yourself with the
JOB_GRADES table, first show the structure of the JOB_GRADES table. Then create a query

that displays the name, job, department name, salary, and grade for all employees.

DESC JOBE_GRADES

Name Mall Type

GRADE LEVEL VARCHARZ [3]
LOWEST 3AL NUMEER
HIGHEST SAL NUMEER

3 rows selected

LasT mane | Joe o cePaRTMEMT MamE (B saLary | GrRADE LEVEL

1 Vargas ST_CLERK Shipping 2500 A,
2 Matos ST CLERK Shipping 2600 A,
3 Davies =T_CLERK Shipping 00 E
4 Rajs =T_CLERK Shipping 3500 B
5 Lorentz IT_PROG IT 4200 B
B Whalen AD_ASST Administration 4400 B
¥ Mourgos =ST_MAN Zhipping Sa00 B
g Ernst IT_PROG IT G000 <
9 Fay hik_REP harketing BOO0 C
10 Gietz AC_ACCOUNT Accounting g300 C
18 De Haan AD WP Executive 17000 E
18 King AD PRES Executive 24000 E

Oracle Database 11g: SQL Fundamentals | 6 - 41

Practice 6 (continued)
If you want an extra challenge, complete the following exercises:

8. The HR department wants to determine the names of all the employees who were hired after
Davies. Create a query to display the name and hire date of any employee hired after employee

Davies.

LAST_MAME HRE_DATE
1 Larentz 07-FEB-99
2 Mourgos 16-MOY -39
3 Matos 15-MAR-95
4 “argas 09-JUL-93
5 Zlotkey 29-Ja&n-00
B Tavylor 24-MAR-95
¥ Grant 24-hAN -39
g Fay 17-AUG-97

9. The HR department needs to find the names and hire dates of all the employees who were hired
before their managers, along with their managers’ names and hire dates. Save the script to a file
named lab 06 09.sqgl.

LAST_MAME HIRE_DATE LAST_MAME_1 |HIRE_DATE_1
1 YWhalen 17-SEP-57 Hochhar 21-SEP-59
2 Hunold 03-JAM-90 De Haan 13-JAM-93
3 Margas 09-JUL-95 Mourgos 16-MON -39
4 Matoz 15-MAR-93 Mourgos 1E-MON-99
S Davies 29-JAr-97 Mourgos 16-MO%-99
6B Rajs 17-0CT-95 Mourgos 16-MO%-99
7 Grant 24-MaN-99 Flotkey 29-JAM-00
8 Taylor 24-MAR-95 Flotkey 29-JAM-00
9 &hel 11-MaN -85 Flotkey 29-Jan-00

Oracle Database 11g: SQL Fundamentals | 6 - 42

Using Subqueries to Solve Queries

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
* Define subqueries
« Describe the types of problems that the subqueries can
solve
« List the types of subqueries
* Write single-row and multiple-row subqueries

Copyright © 2009, Oracle. All rights reserved.

Objectives
In this lesson, you learn about the more advanced features of the SELECT statement. You can write
subqueries in the WHERE clause of another SQL statement to obtain values based on an unknown
conditional value. This lesson also covers single-row subqueries and multiple-row subqueries.

Oracle Database 11g: SQL Fundamentals | 7 -2

Lesson Agenda

« Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator.

* Null values in a subquery

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 7 -3

Using a Subquery to Solve a Problem

Who has a salary greater than Abel’s?

Main query:

Which employees have salaries greater than Abel’s

“h ? salary? T

Subquery: ‘

Q;,q What is Abel’s salary?
L

Copyright © 2009, Oracle. All rights reserved.

Using a Subquery to Solve a Problem
Suppose you want to write a query to find out who earns a salary greater than Abel’s salary.

To solve this problem, you need two queries: one to find how much Abel earns, and a second query
to find who earns more than that amount.

You can solve this problem by combining the two queries, placing one query inside the other query.

The inner query (or subquery) returns a value that is used by the outer query (or main query). Using a
subquery is equivalent to performing two sequential queries and using the result of the first query as
the search value in the second query.

Oracle Database 11g: SQL Fundamentals| 7 -4

Subquery Syntax

SELECT select list

FROM table

WHERE expr operator
(SELECT select list
FROM table) ;

* The subquery (inner query) executes before the main
query (outer query).

* The result of the subquery is used by the main query.

Copyright © 2009, Oracle. All rights reserved.

Subquery Syntax
A subquery 1s a SELECT statement that is embedded in the clause of another SELECT statement.
You can build powerful statements out of simple ones by using subqueries. They can be very useful

when you need to select rows from a table with a condition that depends on the data in the table
itself.

You can place the subquery in a number of SQL clauses, including the following:

« WHERE clause

« HAVING clause

« FROM clause
In the syntax:

operator includes a comparison condition such as >, =, or IN

Note: Comparison conditions fall into two classes: single-row operators (>, =, >=, <, <>, <=) and
multiple-row operators (IN, ANY, ALL).

The subquery is often referred to as a nested SELECT, sub-SELECT, or inner SELECT statement.
The subquery generally executes first, and its output is used to complete the query condition for the
main (or outer) query.

Oracle Database 11g: SQL Fundamentals| 7 -5

Using a Subquery

SELECT last name, salary

FROM employees

WHERE salary > 11000 < |
(SELECT salary
FROM employees

WHERE last name = 'Abel')|;
LasT_Hane [saLary |
1 King 24000
2 Kochhar 17000
3 De Haan 17000
4 Hartstein 13000
5 Higgins 12000

Copyright © 2009, Oracle. All rights reserved.

Using a Subquery
In the slide, the inner query determines the salary of employee Abel. The outer query takes the result
of the inner query and uses this result to display all the employees who earn more than employee
Abel.

Oracle Database 11g: SQL Fundamentals| 7 -6

Guidelines for Using Subqueries

« Enclose subqueries in parentheses.

« Place subqueries on the right side of the comparison
condition for readability (However, the subquery can
appear on either side of the comparison operator.).

* Use single-row operators with single-row subqueries and
multiple-row operators with multiple-row subqueries.

Copyright © 2009, Oracle. All rights reserved.

Guidelines for Using Subqueries

* A subquery must be enclosed in parentheses.

* Place the subquery on the right side of the comparison condition for readability. However, the
subquery can appear on either side of the comparison operator.

» Two classes of comparison conditions are used in subqueries: single-row operators and
multiple-row operators.

Oracle Database 11g: SQL Fundamentals| 7 -7

Types of Subqueries

« Single-row subquery

Main query

Subquery returns

v

ST CLERK

* Multiple-row subquery

Main query

returns
‘ Subquery > zz—CLERK

Copyright © 2009, Oracle. All rights reserved.

Types of Subqueries
 Single-row subqueries: Queries that return only one row from the inner SELECT statement
* Multiple-row subqueries: Queries that return more than one row from the inner SELECT
statement

Note: There are also multiple-column subqueries, which are queries that return more than one
column from the inner SELECT statement. These are covered in the Oracle Database 11g: SOL

Fundamentals I course.

Oracle Database 11g: SQL Fundamentals| 7 -8

Lesson Agenda

 Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator

* Null values in a subquery

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 7 -9

Single-Row Subqueries

* Return only one row
« Use single-row comparison operators

Operator Meaning

= Equal to

> Greater than

== Greater than or equal to
< Less than

<= Less than or equal to
<= Not equal to

Copyright © 2009, Oracle. All rights reserved.

Single-Row Subqueries

A single-row subquery is one that returns one row from the inner SELECT statement. This type of
subquery uses a single-row operator. The slide gives a list of single-row operators.

Example:

Display the employees whose job ID is the same as that of employee 141:
SELECT last name, job id
FROM employees
WHERE job id =
(SELECT job_id
FROM employees
WHERE employee id = 141);

LasT_mame B Joe D
1 Rejs ST_CLERK
2 Davies =T_CLERK
3 Matos ST_CLERK
4 Yargas =T_CLERK

Oracle Database 11g: SQL Fundamentals| 7 -10

Executing Single-Row Subqueries

SELECT last name, job id, salary

FROM employees

WHERE job id = < 1 SA_REP

(SELECT job id

FROM employees

WHERE last name = ‘Taylor’)
AND salary > < 1 8600

(SELECT salary

FROM employees

WHERE last name = ‘Taylor’) ;

LasT_mave @ soED [saLary |
1 el SA_REP 11000

Copyright © 2009, Oracle. All rights reserved.

Executing Single-Row Subqueries

A SELECT statement can be considered as a query block. The example in the slide displays
employees who do the same job as “Taylor,” but earn more salary than him.

The example consists of three query blocks: the outer query and two inner queries. The inner query
blocks are executed first, producing the query results SA_ REP and 8600, respectively. The outer

query block is then processed and uses the values that were returned by the inner queries to complete
its search conditions.

Both inner queries return single values (SA_REP and 8600, respectively), so this SQL statement 1s
called a single-row subquery.

Note: The outer and inner queries can get data from different tables.

Oracle Database 11g: SQL Fundamentals | 7 - 11

Using Group Functions in a Subquery

SELECT last name, job id, salary
FROM employees

WHERE salary = <] 2500
(SELECT MIN(salary)
FROM em_ployees) ;

LAST _MAME | JOB_|D | SALARY
1 Vargas ST_CLERK 2500

Copyright © 2009, Oracle. All rights reserved.

Using Group Functions in a Subquery

You can display data from a main query by using a group function in a subquery to return a single
row. The subquery is in parentheses and is placed after the comparison condition.

The example in the slide displays the employee last name, job ID, and salary of all employees whose

salary is equal to the minimum salary. The MIN group function returns a single value (2500) to the
outer query.

Oracle Database 11g: SQL Fundamentals | 7 -12

The HAVING Clause with Subqueries

* The Oracle server executes the subqueries first.
* The Oracle server returns results into the HAVING clause
of the main query.

SELECT department id, MIN(salary)

FROM employees

GROUP BY department id 2500

|[HAVING MIN(salary)| > -« ,
(SELECT MIN(salary)
FROM employees
WHERE department id = 50)|;

H DEPARTMENTJD|H MWKSALARY)|
1 () 7000

2 a0 17000
3 20 G000
| 7 10 440[!‘

Copyright © 2009, Oracle. All rights reserved.

The HAVING Clause with Subqueries
You can use subqueries not only in the WHERE clause, but also in the HAVING clause. The Oracle
server executes the subquery and the results are returned into the HAVING clause of the main query.
The SQL statement in the slide displays all the departments that have a minimum salary greater than
that of department 50.

Example:

Find the job with the lowest average salary.
SELECT job 1d, AVG(salary)

FROM employees
GROUP BY job_id
HAVING AVG(salary) = (SELECT MIN(AVG(salary))

FROM employees
GROUP BY job_ id);

JoB D B avesaLaRy)
1 ST_CLERK 2025

Oracle Database 11g: SQL Fundamentals| 7 -13

What Is Wrong with This Statement?

SELECT employee id, last name
FROM employees
WHERE |sa1ary|=

(SELECT MIN(salary)
FROM employees

|GROUP BY department_id];

"ORATOTAZ7: single-row subguery returns more than one ... |

Single-row operator
AR errar was encourtered perfarming the requested Wlth mu Itl p|e-r0W
operation: Squuery

ORA-01427. single-rowy subguery returns more than one rov
01427, 00000 - "single-row subguery returns more than one
o

*Cause

*Action:

Error at Line:

Copyright © 2009, Oracle. All rights reserved.

What Is Wrong with This Statement?
A common error with subqueries occurs when more than one row is returned for a single-row
subquery.
In the SQL statement in the slide, the subquery contains a GROUP BY clause, which implies that the
subquery will return multiple rows, one for each group that it finds. In this case, the results of the
subquery are 4400, 6000, 2500,4200, 7000, 17000, and 8300.
The outer query takes those results and uses them in its WHERE clause. The WHERE clause contains
an equal (=) operator, a single-row comparison operator that expects only one value. The = operator
cannot accept more than one value from the subquery and, therefore, generates the error.

To correct this error, change the = operator to IN.

Oracle Database 11g: SQL Fundamentals | 7 - 14

No Rows Returned by the Inner Query

SELECT last name, job id
FROM employees
WHERE job id =

(SELECT job id
FROM employees
WHERE last name = 'Haas')|;

0 rows 3Elected|

Subquery returns no rows because there is no
employee named “Haas.”

Copyright © 2009, Oracle. All rights reserved.

No Rows Returned by the Inner Query
A common problem with subqueries occurs when no rows are returned by the inner query.

In the SQL statement in the slide, the subquery contains a WHERE clause. Presumably, the intention
is to find the employee whose name is Haas. The statement is correct, but selects no rows when
executed.

Because, there is no employee named Haas. So the subquery returns no rows. The outer query takes
the results of the subquery (null) and uses these results in its WHERE clause. The outer query finds no

employee with a job ID equal to null, and so returns no rows. If a job existed with a value of null, the
row is not returned because comparison of two null values yields a null; therefore, the WHERE
condition is not true.

Oracle Database 11g: SQL Fundamentals| 7 -15

Lesson Agenda

 Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator

* Null values in a subquery

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 7 -16

Multiple-Row Subqueries

* Return more than one row
« Use multiple-row comparison operators

Operator Meaning

IN Equal to any member in the list

ANY Must be preceded by =, ! =, >, <, <=, >=.
Compares a value to each value in a list or
returned by a query. Evaluates to FALSE if the
query returns no rows.

ALL Must be preceded by =, ! =, >, <, <=, >=.
Compares a value to every value in a list or
returned by a query. Evaluates to TRUE if the

query returns no rows.

Copyright © 2009, Oracle. All rights reserved.

Multiple-Row Subqueries

Subqueries that return more than one row are called multiple-row subqueries. You use a multiple-row
operator, instead of a single-row operator, with a multiple-row subquery. The multiple-row operator
expects one or more values:

SELECT last name, salary, department id

FROM employees

WHERE salary IN (SELECT MIN (salary)
FROM employees
GROUP BY department id) ;

Example:
Find the employees who earn the same salary as the minimum salary for each department.

The inner query is executed first, producing a query result. The main query block is then processed
and uses the values that were returned by the inner query to complete its search condition. In fact, the
main query appears to the Oracle server as follows:

SELECT last name, salary, department id

FROM employees

WHERE salary IN (2500, 4200, 4400, 6000, 7000, 8300,
8600, 17000) ;

Oracle Database 11g: SQL Fundamentals | 7 -17

Using the ANY Operator
in Multiple-Row Subqueries

SELECT employee id, last name, job id, salary
FROM employees 9000, 6000, 4200

WHERE salary <|ANY||: |

(SELECT salary

FROM employees

WHERE j Ob_id = 'IT PROG')
AND job id <> 'IT PROG';

empLOVEE_D | LasT meme [Josup B saLary |

1 144 Vargas ST_CLERK 2500

2 143 Matos ST_CLERK 2600

3 142 Davies ST_CLERK 3100

4 141 Rajs ST_CLERK 3500

5 200 iblen AD_ASST 4400

g 206 Gietz AC_ACCOUNT &300

10 176 Taylor Sa_REP 8500

Copyright © 2009, Oracle. All rights reserved.

Using the ANY Operator in Multiple-Row Subqueries

The ANY operator (and its synonym, the SOME operator) compares a value to each value returned by
a subquery. The slide example displays employees who are not [T programmers and whose salary is
less than that of any IT programmer. The maximum salary that a programmer earns is $9,000.

<ANY means less than the maximum. >ANY means more than the minimum. =ANY is equivalent to
IN.

Oracle Database 11g: SQL Fundamentals| 7 -18

Using the ALL Operator
in Multiple-Row Subqueries

SELECT employee id, last name, job id, salary
FROM employees 9000, 6000, 4200

WHERE salary <| ALL|I <]
(SELECT salary

FROM employees

WHERE 3job id = 'IT PROG')
AND job id <> 'IT PROG';
empLovEE D | LasT_name [{ Josip @ saLary
1 141 Rajs ST_CLERK 3500
2 142 Davies ST_CLERK 3100
3 143 Matos ST_CLERK 2600
4 144 Vargas ST_CLERK 2500

Copyright © 2009, Oracle. All rights reserved.

Using the ALL Operator in Multiple-Row Subqueries

The ALL operator compares a value to every value returned by a subquery. The example in the slide
displays employees whose salary is less than the salary of all employees with a job ID of IT PROG
and whose job is not IT PROG.

>ALL means more than the maximum and <ALL means less than the minimum.

The NOT operator can be used with IN, ANY, and ALL operators.

Oracle Database 11g: SQL Fundamentals| 7 -19

Lesson Agenda

» Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator

* Null values in a subquery

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 7 - 20

Null Values in a Subquery

SELECT emp.last name

FROM employees emp

WHERE emp.employee id NOT IN
(SELECT mgr.manager id
FROM employees mgr) ;

0 rows selected

Copyright © 2009, Oracle. All rights reserved.

Null Values in a Subquery

The SQL statement in the slide attempts to display all the employees who do not have any
subordinates. Logically, this SQL statement should have returned 12 rows. However, the SQL
statement does not return any rows. One of the values returned by the inner query is a null value, and,
therefore, the entire query returns no rows.

The reason is that all conditions that compare a null value result in a null. So whenever null values
are likely to be part of the results set of a subquery, do not use the NOT IN operator. The NOT IN
operator is equivalent to <> ALL.

Notice that the null value as part of the results set of a subquery is not a problem if you use the IN
operator. The IN operator is equivalent to =ANY. For example, to display the employees who have
subordinates, use the following SQL statement:
SELECT emp.last name
FROM employees emp
WHERE emp.employee id 1IN
(SELECT mgr.manager id
FROM employees mgr) ;

Oracle Database 11g: SQL Fundamentals | 7 - 21

Null Values in a Subquery (continued)

Alternatively, a WHERE clause can be included in the subquery to display all employees who do not
have any subordinates:
SELECT last name FROM employees
WHERE employee id NOT IN
(SELECT manager_ id
FROM employees
WHERE manager id IS NOT NULL) ;

Oracle Database 11g: SQL Fundamentals | 7 - 22

Quiz

Using a subquery is equivalent to performing two sequential
queries and using the result of the first query as the search
value(s) in the second query.

1. True
2. False

Copyright © 2009, Oracle. All rights reserved.

Answer: 1

Oracle Database 11g: SQL Fundamentals | 7 -23

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
* Identify when a subquery can help solve a problem
* Write subqueries when a query is based on unknown

values
SELECT select list
FROM table
WHERE expr operator
(SELECT select list
FROM table) ;

Summary

In this lesson, you should have learned how to use subqueries. A subquery is a SELECT statement
that is embedded in the clause of another SQL statement. Subqueries are useful when a query is

based on a search criterion with unknown intermediate values.

Subqueries have the following characteristics:

Can pass one row of data to a main statement that contains a single-row operator, such as =, <>,

>, >=, <, 0l <=

Can pass multiple rows of data to a main statement that contains a multiple-row operator, such

as IN

Are processed first by the Oracle server, after which the WHERE or HAVING clause uses the

results
Can contain group functions

Oracle Database 11g: SQL Fundamentals | 7 - 24

Practice 7: Overview

This practice covers the following topics:
« Creating subqueries to query values based on unknown
criteria

« Using subqueries to find out the values that exist in one set
of data and not in another

Copyright © 2009, Oracle. All rights reserved.

Practice 7: Overview
In this practice, you write complex queries using nested SELECT statements.

For practice questions, you may want to create the inner query first. Make sure that it runs and
produces the data that you anticipate before you code the outer query.

Oracle Database 11g: SQL Fundamentals | 7 - 25

Practice 7

1. The HR department needs a query that prompts the user for an employee last name. The query
then displays the last name and hire date of any employee in the same department as the
employee whose name they supply (excluding that employee). For example, if the user enters
Zlotkey, find all employees who work with Zlotkey (excluding Zlotkey).

Enter Substitution Variable

EMTER_MAE:

%]

Llotkey

| 8] %_| | Cancel

LAST MAME

HIRE_DWATE

1 Abel

2 Tavylor

11-MAY-36
24-MAR-95

2. Create a report that displays the employee number, last name, and salary of all employees who
earn more than the average salary. Sort the results in order of ascending salary.

EMPLCEE_ID

LAST_MAME

SALARY

L T I O | T T B o

103 Hunald
149 Zlotkey
174 Abel
205 Higgins
201 Hart=tein
101 Kochhar
102 De Haan
100 King

3000
103500
11000
12000
13000
17000
17000
24000

Oracle Database 11g: SQL Fundamentals | 7 - 26

Practice 7 (continued)

3. Write a query that displays the employee number and last name of all employees who work in a
department with any employee whose last name contains the letter “u.” Save your SQL
statement as 1ab 07 03 .sqgl. Run your query.

EMPLOYEE ID | LasT mame
124 hMourgos
141 Rajz
142 Davies
143 Matos
144 Vargas
103 Hunold
104 Ernst
107 Lorertz

L e) L I % B

4. The HR department needs a report that displays the last name, department number, and job ID
of all employees whose department location ID is 1700.

LasT_mane B oerarTmENT D | JoB D
1 Whalen 10 8D _ASST
2 King 90 A0 _PRES
3 Kochhar an AD VP
4 De Haan ao AD VP
5 Higgins 110 AC_MGR
5 Gietz 110 &C_ACCOUNT

Modify the query so that the user is prompted for a location ID. Save this to a file named
lab 07 _04.sql.

5. Create a report for HR that displays the last name and salary of every employee who reports to

King.
LAST_NAME | B saLary :
1 Kachhar \‘ - EDE
2 De Haan 170aa
3 Mourgos Sa00
4 Flotkey 10500
5 Hart=tein 13000

Oracle Database 11g: SQL Fundamentals | 7 - 27

Practice 7 (continued)

6. Create a report for HR that displays the department number, last name, and job ID for every
employee in the Executive department.

CEPARTMENT IO |[B LasT mame B JoB D

1 a0 King AD PRES
2 90 Kochhar AD NP
3 90 De Haan AD WP

If you have the time, complete the following exercise:

7. Modify the query in 1ab 07 03.sqgl to display the employee number, last name, and salary
of all employees who earn more than the average salary, and who work in a department with
any employee whose last name contains a “u.” Resave 1lab 07 03.sqgl as
lab 07 _07.sqgl. Run the statement in 1ab_07 07.sqgl.

empLovEE D (B LasT mame (B saLary
1 103 Hunold 000

Oracle Database 11g: SQL Fundamentals | 7 - 28

Using the Set Operators

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
* Describe set operators
« Use a set operator to combine multiple queries into a
single query
« Control the order of rows returned

Copyright © 2009, Oracle. All rights reserved.

Objectives
In this lesson, you learn how to write queries by using set operators.

Oracle Database 11g: SQL Fundamentals| 8 -2

Lesson Agenda

« Set Operators: Types and guidelines
 Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

 Matching the SELECT statements

* Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 8 -3

Set Operators

A B A B

UNION/UNION ALL

INTERSECT

MINUS

Copyright © 2009, Oracle. All rights reserved.

Set Operators

Set operators combine the results of two or more component queries into one result. Queries
containing set operators are called compound queries.

Operator Returns

UNION Rows from both queries after eliminating duplications

UNION ALL Rows from both queries, including all duplications
INTERSECT Rows that are common to both queries

MINUS Rows in the first query that are not present in the second query

All set operators have equal precedence. If a SQL statement contains multiple set operators, the
Oracle server evaluates them from left (top) to right (bottom)—if no parentheses explicitly specify
another order. You should use parentheses to specify the order of evaluation explicitly in queries that
use the INTERSECT operator with other set operators.

Oracle Database 11g: SQL Fundamentals| 8 -4

Set Operator Guidelines

* The expressions in the SELECT lists must match in
number.

* The data type of each column in the second query must
match the data type of its corresponding column in the first

query.

» Parentheses can be used to alter the sequence of
execution.

* ORDER BY clause can appear only at the very end of the
statement.

Copyright © 2009, Oracle. All rights reserved.

Set Operator Guidelines

» The expressions in the SELECT lists of the queries must match in number and data type. Queries
that use UNION, UNION ALL, INTERSECT, and MINUS operators in their WHERE clause must
have the same number and data type of columns in their SELECT list. The data type of the
columns in SELECT list of the queries in the compound query may not be exactly the same. The
column in second query must be in the same data type group (such as numeric or character) as
the corresponding column in the first query.

» Set operators can be used in subqueries.

* You should use parentheses to specify the order of evaluation in queries that use the
INTERSECT operator with other set operators. This ensures compliance with emerging SQL
standards that will give the INTERSECT operator greater precedence than the other set
operators.

Oracle Database 11g: SQL Fundamentals| 8 -5

The Oracle Server and Set Operators

« Duplicate rows are automatically eliminated except in
UNION ALL.

« Column names from the first query appear in the result.

« The output is sorted in ascending order by default except
in UNION ALL.

Copyright © 2009, Oracle. All rights reserved.

The Oracle Server and Set Operators

When a query uses set operators, the Oracle server eliminates duplicate rows automatically except in
the case of the UNION ALL operator. The column names in the output are decided by the column list
in the first SELECT statement. By default, the output is sorted in ascending order of the first column
of the SELECT clause.

The corresponding expressions in the SELECT lists of the component queries of a compound query
must match in number and data type. If component queries select character data, the data type of the
return values is determined as follows:
 If both queries select values of CHAR data type, of equal length, then the returned values have
the CHAR data type of that length. If the queries select values of CHAR with different lengths,
then the returned value is VARCHAR?2 with the length of the larger CHAR value.
+ If either or both of the queries select values of VARCHAR?2 data type, then the returned values
have the VARCHAR? data type.

If component queries select numeric data, then the data type of the return values is determined by
numeric precedence. If all queries select values of the NUMBER type, then the returned values have
the NUMBER data type. In queries using set operators, the Oracle server does not perform implicit
conversion across data type groups. Therefore, if the corresponding expressions of component
queries resolve to both character data and numeric data, the Oracle server returns an error.

Oracle Database 11g: SQL Fundamentals| 8 -6

Lesson Agenda

» Set Operators: Types and guidelines

« Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

 Matching the SELECT statements

* Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 8 -7

Tables Used in This Lesson

The tables used in this lesson are:
« EMPLOYEES: Provides details regarding all current
employees
* JOB_HISTORY: Records the details of the start date and

end date of the former job, and the job identification
number and department when an employee switches jobs

Copyright © 2009, Oracle. All rights reserved.

Tables Used in This Lesson
Two tables are used in this lesson. They are the EMPLOYEES table and the JOB_ HISTORY table.
You are already familiar with the EMPLOYEES table that stores employee details such as a unique
identification number, email address, job identification (such as ST CLERK, SA REP, and so on),
salary, manager and so on. -

Some of the employees have been with the company for a long time and have switched to different
jobs. This is monitored using the JOB. HISTORY table. When an employee switches jobs, the details
of the start date and end date of the former job, the job_id (such as ST CLERK, SA_ REP, and so
on), and the department are recorded in the JOB HISTORY table.

The structure and data from the EMPLOYEES and JOB_ HISTORY tables are shown on the following
pages.

Oracle Database 11g: SQL Fundamentals| 8 -8

Tables Used in This Lesson (continued)

There have been instances in the company, of people who have held the same position more than
once during their tenure with the company. For example, consider the employee Taylor, who joined
the company on 24-MAR-1998. Taylor held the job title SA REP for the period 24-MAR-98 to 31-
DEC-98 and the job title SA_ MAN for the period 01-JAN-99 to 31-DEC-99. Taylor moved back into
the job title of SA REP, which is his current job title.

DESCRIBE employees

DESCEIEBE employees

Name Mull Tvpe
EMPLOYEE ID HNOT NULL NUMEER (&)
FIRST NAME VARCHARZ (20)
La3T NAME NOT NUOLL WABRCHARZ(Z5)
EMATL NOT NOLL WVARCHARZ(Z5)
PHONE _NUMEEE. VARCHARA(20)
HIFE DATE NOT NULL DATE

JOE_ID NOT NULL WARCHARZ(10)
SALARY NUMEEER. (S,2)
COMMISSION PCT NUMEER. (2,2)
MANAGER TD NUMEEER. (&)
DEPARTMENT _ID NUTMEEE. [4)

Oracle Database 11g: SQL Fundamentals| 8 -9

Tables Used in This Lesson (continued)

SELECT employee id, last name,
FROM employees;

job_id, hire date, department id

empLovEE D (B LasT mame [l JoB D HIRE DaTE B DEPARTMENT ID
1 100 King AD_PRES 17-JUN-87 90
2 101 Kachhar AD_WP 21-SEP-59 90
3 102 De: Haan AD WP 13-J8N-83 90
4 103 Hunald IT_PROG 03-JAH-50 B0
5 104 Ernist IT_PROG 21-MAY-91 B0
5 107 Lorentz IT_PROG 07-FEB-99 B0
7 124 Mourgos ST_MAN 16-MNOY-39 50
5 141 Rajs ST _CLERK ~ 17-0CT-35 50
g 142 Davies ST _CLERK 20-JAN-97 50
10 143 Matos ST_CLERK 15-M&R-93 50
11 144 Vargas ST_CLERK 09-JUL-98 50
12 143 Zlatkey Sa_ AN 29-J4H-00 50
13 174 Akl SA_REP 11-M&Y 95 50
14 176 Taylar S& REP 24-MAR-95 80
15 178 Grant S&,_REP 24-M&Y-39 (i)
15 200 Whilen AD_ASST 17-SEP-7 10
17 201 Hartstein Mb_MAN 17-FEB-95 20
DESCRIBE job history
describe job_history
Name Mull Tvne
EMPLOYEE_ID NOT NULL NUMEER (6]
START DATE NOT NULL DATE
END_DATE HOT NULL DATE
J0E_ID NOT NULL VARCHARZ (10}
DEPARTMENT ID NUMEEE{ 4

Oracle Database 11g: SQL Fundamentals| 8 -10

Tables Used in This Lesson (continued)
SELECT * FROM job history;

EMPLOYEE_ID |START_DATE [END_DATE |[§l JOB_ID DEFARTMEMT D
1 10213-J8MN-93 24-JUL-98 IT_PROG =]
2 101 21-8EP-89 27-0CT-93 AC_ACCOUNT 110
5 101 28-0CT-95 15-MAR-97 AC_MGR 110
4 201 17-FEB-96 19-DEC-99 K_REP 20
5 114 24-MAR-98 31-DEC-99 ST_CLERK 500
B 122 01-JAN-39 31-DEC-99 ST_CLERK 500
7 20017-5EP-87 17-JUN-93 AD_ASST a0
g 176 24-MAR-98 31-DEC-98 S&_REP a0
g 176 01-JAN-99 31-DEC-99 S&_MAN il
10 20001-JUL-94 31-DEC-98 AC_ACCOUNT a0

Oracle Database 11g: SQL Fundamentals | 8 - 11

Lesson Agenda

» Set Operators: Types and guidelines
 Tables used in this lesson

* UNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

 Matching the SELECT statements

* Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 8 -12

UNION Operator

The UNION operator returns rows from both queries after eliminating
duplications.

Copyright © 2009, Oracle. All rights reserved.

UNION Operator

The UNION operator returns all rows that are selected by either query. Use the UNION operator to
return all rows from multiple tables and eliminate any duplicate rows.

Guidelines
» The number of columns being selected must be the same.
» The data types of the columns being selected must be in the same data type group (such as
numeric or character).
* The names of the columns need not be identical.
« UNION operates over all of the columns being selected.
« NULL values are not ignored during duplicate checking.
* By default, the output is sorted in ascending order of the columns of the SELECT clause.

Oracle Database 11g: SQL Fundamentals| 8 -13

Using the UNION Operator

Display the current and previous job details of all employees.
Display each employee only once.

SELECT employee id, job id
FROM employees

SELECT employee id, job id
FROM job history;

H EMPLOYEEJD|H JOB_|D
1 100 AD_PRES
2 101 AC_ACCOUNT
22 200 AC_ACCOUNT
23 200 AD_ASST
24 201 MH_MAN

Copyright © 2009, Oracle. All rights reserved.

Using the UNION Operator
The UNION operator eliminates any duplicate records. If records that occur in both the EMPLOYEES
and the JOB_ HISTORY tables are identical, the records are displayed only once. Observe in the
output shown in the slide that the record for the employee with the EMPLOYEE_ID 200 appears

twice because the JOB_ID is different in each row.

Consider the following example:
SELECT employee id, job_id, department id

FROM employees

UNION

SELECT employee id, job id, department id

FROM job_history;

EMPLOYEED | JoBD DEFARTMENT IO

1 100 AD_PRES o
2 101 AC_ACCOUNT 110
22 200 AC_ACCOUNT a0
23 200 AD_ASST 10
24 200 AD_ASST a0

Oracle Database 11g: SQL Fundamentals | 8 - 14

Using the UNION Operator (continued)
In the preceding output, employee 200 appears three times. Why? Note the DEPARTMENT ID
values for employee 200. One row has a DEPARTMENT ID of 90, another 10, and the third 90.
Because of these unique combinations of job IDs and department IDs, each row for employee 200 is
unique and therefore not considered to be a duplicate. Observe that the output is sorted in ascending
order of the first column of the SELECT clause (in this case, EMPLOYEE_ID).

Oracle Database 11g: SQL Fundamentals| 8 - 15

UNION ALL Operator

The UNION ALL operator returns rows from both queries, including all
duplications.

Copyright © 2009, Oracle. All rights reserved.

UNION ALL Operator

Use the UNION ALL operator to return all rows from multiple queries.
Guidelines

The guidelines for UNION and UNION ALL are the same, with the following two exceptions that
pertain to UNION ALL: Unlike UNION, duplicate rows are not eliminated and the output is not sorted
by default.

Oracle Database 11g: SQL Fundamentals| 8 - 16

Using the UNION ALL Operator

Display the current and previous departments of all employees.
SELECT employee id, job id, department id

FROM employees
|UNION ALL

SELECT employee id, job id, department id
FROM job history
ORDER BY employee id;

8 empLoveen|§ JoBip |§ DEPARTMENT D
1 100 AD_PRES a0
18 144 ST_CLERK 50
17 143 S4,_MAN 50
18 174 54, REP &0
13 175 54_RER a0l
20 175 S4,_MAN 50
21 176 54_REP 0|
22 175 54_REP ()
| 30 206 AC_ACCOUNT 10|

Copyright © 2009, Oracle. All rights reserved.

Using the UNION ALL Operator

In the example, 30 rows are selected. The combination of the two tables totals to 30 rows. The
UNION ALL operator does not eliminate duplicate rows. UNION returns all distinct rows selected by
either query. UNION ALL returns all rows selected by either query, including all duplicates. Consider
the query in the slide, now written with the UNION clause:

SELECT employee id, job id,department id

FROM employees

UNION

SELECT employee id, job id,department id
FROM job history

ORDER BY employee 1id;

The preceding query returns 29 rows. This is because it eliminates the following row (because it is a
duplicate):

176 S&_REP ga

Oracle Database 11g: SQL Fundamentals| 8 -17

Lesson Agenda

» Set Operators: Types and guidelines
 Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

 Matching the SELECT statements
 Using ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 8 -18

INTERSECT Operator

The INTERSECT operator returns rows that are common to both queries.

Copyright © 2009, Oracle. All rights reserved.

INTERSECT Operator
Use the INTERSECT operator to return all rows that are common to multiple queries.

Guidelines
* The number of columns and the data types of the columns being selected by the SELECT
statements in the queries must be identical in all the SELECT statements used in the query. The
names of the columns, however, need not be identical.
* Reversing the order of the intersected tables does not alter the result.
« INTERSECT does not ignore NULL values.

Oracle Database 11g: SQL Fundamentals| 8 -19

Using the INTERSECT Operator

Display the employee IDs and job IDs of those employees who
currently have a job title that is the same as their previous one
(that is, they changed jobs but have now gone back to doing
the same job they did previously).

SELECT employee id, job id
FROM employees
|INTERSECT|

SELECT employee id, job id
FROM job history;

H EMPLOYEEJD|H JOBJD|
1 176 S&,_REP
2 200 AD_ASST

Copyright © 2009, Oracle. All rights reserved.

Using the INTERSECT Operator

In the example in this slide, the query returns only those records that have the same values in the
selected columns in both tables.

What will be the results if you add the DEPARTMENT _ID column to the SELECT statement from
the EMPLOYEES table and add the DEPARTMENT ID column to the SELECT statement from the
JOB_HISTORY table, and run this query? The results may be different because of the introduction

of another column whose values may or may not be duplicates.

Example:
SELECT employee id, job id, department id
FROM employees
INTERSECT
SELECT employee id, job id, department id
FROM job history;

emeLovEE ID | JoB D |Bl CEPARTMENT ID
1 176 S&_REP a0

Employee 200 is no longer part of the results because the EMPLOYEES.DEPARTMENT ID value is
different from the JOB_ HISTORY.DEPARTMENT ID value.

Oracle Database 11g: SQL Fundamentals| 8 -20

Lesson Agenda

» Set Operators: Types and guidelines
 Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

 MINUS operator

 Matching the SELECT statements

* Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 8 - 21

MINUS Operator

The MINUS operator returns all the distinct rows selected by the first
query, but not present in the second query result set.

Copyright © 2009, Oracle. All rights reserved.

MINUS Operator

Use the MINUS operator to return all distinct rows selected by the first query, but not present in the
second query result set (the first SELECT statement MINUS the second SELECT statement).

Note: The number of columns must be the same and the data types of the columns being selected by
the SELECT statements in the queries must belong to the same data type group in all the SELECT

statements used in the query. The names of the columns, however, need not be identical.

Oracle Database 11g: SQL Fundamentals | 8 - 22

Using the MINUS Operator

Display the employee IDs of those employees who have not
changed their jobs even once.

SELECT employee id
FROM employees
MINUS

SELECT employee id
FROM job history;

EMPLOYEE |
100
103
104
107
124

[]
[B

14 205
13 206

Copyright © 2009, Oracle. All rights reserved.

Using the MINUS Operator
In the example in the slide, the employee IDs in the JOB_ HISTORY table are subtracted from those
in the EMPLOYEES table. The results set displays the employees remaining after the subtraction;
they are represented by rows that exist in the EMPLOYEES table, but do not exist in the
JOB_HISTORY table. These are the records of the employees who have not changed their jobs even
once.

Oracle Database 11g: SQL Fundamentals | 8 - 23

Lesson Agenda

» Set Operators: Types and guidelines
 Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

* Matching the SELECT statements
 Using ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 8 - 24

Matching the SELECT Statements

Using the UNION operator, display the location ID,
department name, and the state where it is located.

You must match the data type (using the TO CHAR
function or any other conversion functions) when columns
do not exist in one or the other table.

SELECT location id, department name "Department",
TO CHAR (NULL) "Warehouse location"
FROM departments

UNION

SELECT location id, TO CHAR(NULL) "Department",
state province
FROM locations;

Copyright © 2009, Oracle. All rights reserved.

Matching the SELECT Statements

Because the expressions in the SELECT lists of the queries must match in number, you can use the
dummy columns and the data type conversion functions to comply with this rule. In the slide, the
name, Warehouse location, is given as the dummy column heading. The TO CHAR function is
used in the first query to match the VARCHAR?2 data type of the state province column that is
retrieved by the second query. Similarly, the TO CHAR function in the second query is used to match
the VARCHAR?2 data type of the department name column that is retrieved by the first query

The output of the query is shown:

L = T B s i e

LOCATION IO | Depaﬂminti VWiarehouse location

140017 (rull
1400 (rull Texas
1500 Shipping (rul
1500 (null Calitornia

1700 Accounting (rully
1700 Administration (rull)
1700 Contracting (rlly
1700 Executive (riulh
1700 (null Washington

Oracle Database 11g: SQL Fundamentals | 8 - 25

Matching the SELECT Statement: Example

Using the UNION operator, display the employee ID, job ID, and
salary of all employees.

SELECT employee id, job id,salary
FROM employees

UNION

SELECT employee id, job id,0

FROM job history;

EMPLOYEE_|D | JOB_ID | SALARY

1 100 AD_PRES 24000
Z 10T AC_ACCOUNT 0
3 101 AC_MGR o
4 101 AD_WP 17000
5 102 AD_VP 17000
29 205 AC_MGR 12000
a0 206 AC_ACCOUNT &300

Copyright © 2009, Oracle. All rights reserved.

Matching the SELECT Statement: Example
The EMPLOYEES and JOB_HISTORY tables have several columns in common (for example,
EMPLOYEE ID, JOB_ID, and DEPARTMENT ID). But what if you want the query to display the
employee ID, job ID, and salary using the UNION operator, knowing that the salary exists only in the
EMPLOYEES table?
The code example in the slide matches the EMPLOYEE ID and JOB_ID columns in the
EMPLOYEES and JOB_HISTORY tables. A literal value of 0 is added to the JOB_ HISTORY
SELECT statement to match the numeric SALARY column in the EMPLOYEES SELECT statement.

In the results shown in the slide, each row in the output that corresponds to a record from the
JOB_HISTORY table contains a 0 in the SALARY column.

Oracle Database 11g: SQL Fundamentals | 8 - 26

Lesson Agenda

» Set Operators: Types and guidelines

« Tables used in this lesson

 UNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

 Matching the SELECT statements

« Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 8 - 27

Using the ORDER BY Clause in Set Operations

« The ORDER BY clause can appear only once at the end of
the compound query.

« Component queries cannot have individual ORDER BY
clauses.

* ORDER BY clause recognizes only the columns of the first
SELECT query.

» By default, the first column of the first SELECT query is
used to sort the output in an ascending order.

Copyright © 2009, Oracle. All rights reserved.

Using the ORDER BY Clause in Set Operations

The ORDER BY clause can be used only once in a compound query. If used, the ORDER BY clause
must be placed at the end of the query. The ORDER BY clause accepts the column name or an alias.
By default, the output is sorted in ascending order in the first column of the first SELECT query.

Note: The ORDER BY clause does not recognize the column names of the second SELECT query. To
avoid confusion over column names, it is a common practice to ORDER BY column positions.

For example, in the following statement, the output will be shown in ascending order of the job id.
SELECT employee id, job id,salary
FROM employees
UNION
SELECT employee id, job id,0
FROM job history
ORDER BY 2;

If you omit the ORDER BY, then by default the output will be sorted in the ascending order of
employee id. You cannot use the columns from the second query to sort the output.

Oracle Database 11g: SQL Fundamentals | 8 - 28

Quiz

|dentify the set operator guidelines.

1. The expressions in the SELECT lists must match in
number.

2. Parentheses may not be used to alter the sequence of
execution.

3. The data type of each column in the second query must
match the data type of its corresponding column in the first
query.

4. The ORDER BY clause can be used only once in a
compound query, unless a UNION ALL operator is used.

Copyright © 2009, Oracle. All rights reserved.

Answer: 1, 3

Oracle Database 11g: SQL Fundamentals| 8 -29

Summary

In this lesson, you should have learned how to use:

* TUNION to return all distinct rows

 UNION ALL to return all rows, including duplicates

 INTERSECT to return all rows that are shared by both
queries

* MINUS to return all distinct rows that are selected by the
first query, but not by the second

* ORDER BY only at the very end of the statement

Copyright © 2009, Oracle. All rights reserved.

Summary

* The UNION operator returns all the distinct rows selected by each query in the compound query.
Use the UNION operator to return all rows from multiple tables and eliminate any duplicate
TOWS.

» Use the UNION ALL operator to return all rows from multiple queries. Unlike the case with the
UNION operator, duplicate rows are not eliminated and the output is not sorted by default.

» Use the INTERSECT operator to return all rows that are common to multiple queries.

» Use the MINUS operator to return rows returned by the first query that are not present in the
second query.

* Remember to use the ORDER BY clause only at the very end of the compound statement.

» Make sure that the corresponding expressions in the SELECT lists match in number and data

type.

Oracle Database 11g: SQL Fundamentals| 8 - 30

Practice 8: Overview

In this practice, you create reports by using:
 The UNION operator

« The INTERSECTION operator

 The MINUS operator

Copyright © 2009, Oracle. All rights reserved.

Practice 8: Overview

In this practice, you write queries using the set operators.

Oracle Database 11g: SQL Fundamentals | 8 - 31

Practice 8

1. The HR department needs a list of department IDs for departments that do not contain the job
ID ST CLERK. Use the set operators to create this report.

DEPARTMENT IO
10

20

&0

a0

a0

110

190

—_—

-~ @ h B I R

2. The HR department needs a list of countries that have no departments located in them. Display
the country ID and the name of the countries. Use the set operators to create this report.

COUMTREY _ID COUMTREY _MAME
1 DE Germany

3. Produce a list of jobs for departments 10, 50, and 20, in that order. Display the job ID and
department ID by using the set operators.

JoB 0 B DEPARTMENT ID
1 &D_ASST 10
2 ST_MAN 50
3 ST_CLERK 50
4 MH_MAN 20
5 MK_REP 20

4. Create a report that lists the employee IDs and job IDs of those employees who currently have a
job title that is the same as their job title when they were initially hired by the company (that is,
they changed jobs but have now gone back to doing their original job).

EMPLOYEE_ID ([JoB_ID
1 176 S&_REF
2 200 AD_ASST

Oracle Database 11g: SQL Fundamentals | 8 - 32

Practice 8 (continued)
5. The HR department needs a report with the following specifications:
* Last name and department ID of all employees from the EMPLOYEES table, regardless of
whether or not they belong to a department
* Department ID and department name of all departments from the DEPARTMENTS table,
regardless of whether or not they have employees working in them
Write a compound query to accomplish this.

LasT Mame B oerarTMENT D (B TO_cHARMULL)
1 kel 80 {ruil)
2 Davies S0 (rully
3 De Haan a0 (rull)
4 Ernzt B0 [rull)
o Fay 20 (rally
E Gietz 110 {rull)
¥ Grant Crlly Crally
g Hart=tein 20 (rally
9 Higgins 110 (nlly
10 Hunold B0 (rull)
11 King 0 [rull
12 Kochhar a0 (rll
13 Lorentz B0 (rull)
14 Matos S0 (rull
15 Mourgos S0 (rll
16 Rajs S0 (rlly
17 Tavlor a0 (rull
18 Vargas S0 (rull)
189 Whalen 10 [rwl)
20 Flotkey 80 (rull
21 (nwlly 10 Administration
22 (nuly 20 Marketing
23 [nuly 20 Shipping
24 (nuill GOIT
25 (nully al Sales
] 26 (il 80 Executive
27 (nuly 110 Accounting
28 [(nully 190 Conrtracting

Oracle Database 11g: SQL Fundamentals| 8 -33

	Cover Page
	Table of Contents
	Preface
	Introduction
	Lesson Objectives
	Lesson Agenda
	Course Objectives
	Course Agenda
	Appendixes Used in the Course
	Lesson Agenda
	Oracle Database 11g: Focus Areas
	Oracle Database 11g
	Oracle Fusion Middleware
	Oracle Enterprise Manager Grid Control 10g
	Oracle BI Publisher
	Lesson Agenda
	Relational and Object Relational Database Management Systems
	Data Storage on Different Media
	Relational Database Concept
	Definition of a Relational Database
	Data Models
	Entity Relationship Model
	Entity Relationship Modeling Conventions
	Relating Multiple Tables
	Relational Database Terminology
	Lesson Agenda
	Using SQL to Query Your Database
	SQL Statements
	Development Environments for SQL
	Lesson Agenda
	The Human Resources (HR) Schema
	Tables Used in the Course
	Lesson Agenda
	Oracle Database 11g Documentation
	Additional Resources
	Summary
	Practice I: Overview

	Lesson 1: Retrieving Data Using the SQL SELECT Statement
	Objectives
	Lesson Agenda
	Capabilities of SQL SELECT Statements
	Basic SELECT Statement
	Selecting All Columns
	Selecting Specific Columns
	Writing SQL Statements
	Column Heading Defaults
	Lesson Agenda
	Arithmetic Expressions
	Using Arithmetic Operators
	Operator Precedence
	Defining a Null Value
	Null Values in Arithmetic Expressions
	Lesson Agenda
	Defining a Column Alias
	Using Column Aliases
	Lesson Agenda
	Concatenation Operator
	Literal Character Strings
	Using Literal Character Strings
	Alternative Quote (q) Operator
	Duplicate Rows
	Lesson Agenda
	Displaying the Table Structure
	Using the DESCRIBE Command
	Quiz
	Summary
	Practice 1: Overview

	Lesson 2: Restricting and Sorting Data
	Objectives
	Lesson Agenda
	Limiting Rows Using a Selection
	Limiting the Rows That Are Selected
	Using the WHERE Clause
	Character Strings and Dates
	Comparison Operators
	Using Comparison Operators
	Range Conditions Using the BETWEEN Operator
	Membership Condition Using the IN Operator
	Pattern Matching Using the LIKE Operator
	Combining Wildcard Characters
	Using the NULL Conditions
	Defining Conditions Using the Logical Operators
	Using the AND Operator
	Using the OR Operator
	Using the NOT Operator
	Lesson Agenda
	Rules of Precedence
	Lesson Agenda
	Using the ORDER BY Clause
	Sorting
	Lesson Agenda
	Substitution Variables
	Using the Single-Ampersand Substitution Variable
	Character and Date Values with Substitution Variables
	Specifying Column Names, Expressions, and Text
	Using the Double-Ampersand Substitution Variable
	Lesson Agenda
	Using the DEFINE Command
	Using the VERIFY Command
	Quiz
	Summary
	Practice 2: Overview

	Lesson 3: Using Single-Row Functions to Customize Output
	Objectives
	Lesson Agenda
	SQL Functions
	Two Types of SQL Functions
	Single-Row Functions
	Lesson Agenda
	Character Functions
	Case-Conversion Functions
	Using Case-Conversion Functions
	Character-Manipulation Functions
	Using the Character-Manipulation Functions
	Lesson Agenda
	Number Functions
	Using the ROUND Function
	Using the TRUNC Function
	Using the MOD Function
	Lesson Agenda
	Working with Dates
	RR Date Format
	Using the SYSDATE Function
	Arithmetic with Dates
	Using Arithmetic Operators with Dates
	Lesson Agenda
	Date-Manipulation Functions
	Using Date Functions
	Using ROUND and TRUNC Functions with Dates
	Quiz
	Summary
	Practice 3: Overview

	Lesson 4: Using Conversion Functions and Conditional Expressions
	Objectives
	Lesson Agenda
	Conversion Functions
	Implicit Data Type Conversion
	Explicit Data Type Conversion
	Lesson Agenda
	Using the TO_CHAR Function with Dates
	Elements of the Date Format Model
	Using the TO_CHAR Function with Dates
	Using the TO_CHAR Function with Numbers
	Using the TO_NUMBER and TO_DATE Functions
	Using the TO_CHAR and TO_DATE Function with RR Date Format
	Lesson Agenda
	Nesting Functions
	Lesson Agenda
	General Functions
	NVL Function
	Using the NVL Function
	Using the NVL2 Function
	Using the NULLIF Function
	Using the COALESCE Function
	Lesson Agenda
	Conditional Expressions
	CASE Expression
	Using the CASE Expression
	DECODE Function
	Using the DECODE Function
	Quiz
	Summary
	Practice 4: Overview

	Lesson 5: Reporting Aggregated Data Using the Group Functions
	Objectives
	Lesson Agenda
	What Are Group Functions?
	Types of Group Functions
	Group Functions: Syntax
	Using the AVG and SUM Functions
	Using the MIN and MAX Functions
	Using the COUNT Function
	Using the DISTINCT Keyword
	Group Functions and Null Values
	Lesson Agenda
	Creating Groups of Data
	Creating Groups of Data: GROUP BY Clause Syntax
	Using the GROUP BY Clause
	Grouping by More than One Column
	Using the GROUP BY Clause on Multiple Columns
	Illegal Queries Using Group Functions
	Restricting Group Results
	Restricting Group Results with the HAVING Clause
	Using the HAVING Clause
	Lesson Agenda
	Nesting Group Functions
	Quiz
	Summary
	Practice 5: Overview

	Lesson 6: Displaying Data from Multiple Tables
	Objectives
	Lesson Agenda
	Obtaining Data from Multiple Tables
	Types of Joins
	Joining Tables Using SQL:1999 Syntax
	Qualifying Ambiguous Column Names
	Lesson Agenda
	Creating Natural Joins
	Retrieving Records with Natural Joins
	Creating Joins with the USING Clause
	Joining Column Names
	Retrieving Records with the USING Clause
	Using Table Aliases with the USING Clause
	Creating Joins with the ON Clause
	Retrieving Records with the ON Clause
	Creating Three-Way Joins with the ON Clause
	Applying Additional Conditions to a Join
	Lesson Agenda
	Joining a Table to Itself
	Self-Joins Using the ON Clause
	Lesson Agenda
	Nonequijoins
	Retrieving Records with Nonequijoins
	Lesson Agenda
	Returning Records with No Direct Match Using OUTER Joins
	INNER Versus OUTER Joins
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	FULL OUTER JOIN
	Lesson Agenda
	Cartesian Products
	Generating a Cartesian Product
	Creating Cross Joins
	Quiz
	Summary
	Practice 6: Overview

	Lesson 7: Using Subqueries to Solve Queries
	Objectives
	Lesson Agenda
	Using a Subquery to Solve a Problem
	Subquery Syntax
	Using a Subquery
	Guidelines for Using Subqueries
	Types of Subqueries
	Lesson Agenda
	Single-Row Subqueries
	Executing Single-Row Subqueries
	Using Group Functions in a Subquery
	The HAVING Clause with Subqueries
	What Is Wrong with This Statement?
	No Rows Returned by the Inner Query
	Lesson Agenda
	Multiple-Row Subqueries
	Using the ANY Operatorin Multiple-Row Subqueries
	Using the ALL Operatorin Multiple-Row Subqueries
	Lesson Agenda
	Null Values in a Subquery
	Quiz
	Summary
	Practice 7: Overview

	Lesson 8: Using the Set Operators
	Objectives
	Lesson Agenda
	Set Operators
	Set Operator Guidelines
	The Oracle Server and Set Operators
	Lesson Agenda
	Tables Used in This Lesson
	Lesson Agenda
	UNION Operator
	Using the UNION Operator
	UNION ALL Operator
	Using the UNION ALL Operator
	Lesson Agenda
	INTERSECT Operator
	Using the INTERSECT Operator
	Lesson Agenda
	MINUS Operator
	Using the MINUS Operator
	Lesson Agenda
	Matching the SELECT Statements
	Matching the SELECT Statement: Example
	Lesson Agenda
	Using the ORDER BY Clause in Set Operations
	Quiz
	Summary
	Practice 8: Overview

