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ABSTRACT Utilizing Unmanned Aerial Vehicles (UAVs) as flying edge nodes to support task offloading
from terminal devices has recently attracted significant research attention. However, the literature lacks a
systematic perspective on this emerging topic. The goals are to understand the volume and trends of research,
identify use case scenarios and proposed architectures, classify the core topics addressed, explore group
techniques explored, recognize task types considered, and summarize open issues needing further work.
Publications are mapped by type and source from 2019 to 2023 to assess the maturity and activity level
in this field over time. Various use case scenarios for UAV-enabled Mobile Edge Computing (MEC) task
offloading are identified and categorized, and different proposed architectures for offloading between UAV-
MEC platforms are summarized. Techniques for offloading decision-making and performance enhancement
are grouped to identify popular and less explored methods. The literature is also mapped based on the types
of tasks considered for offloading to UAV-enabled MEC platforms to recognize the focus areas. Open issues
that are briefly discussed across papers but require additional research are summarized on basis of the gaps
identified. This systematic perspective consolidates existing research in an organized manner to guide future
works and establish a coherent taxonomy to organize future studies and reviews. Overall, mapping trends
helps characterize research maturity, guiding its continued development.

INDEX TERMS Unmanned aerial vehicle (UAV), mobile edge computing (MEC), task offloading,
systematic mapping study (SMS).

I. INTRODUCTION

An Unmanned Aerial Vehicle (UAV) is a self-navigating
aircraft that operates without a human pilot. UAVs can
fly autonomously, following predetermined flight plans or
adjusting their routes in real-time based on their surround-
ings [1]. These sophisticated devices are equipped with a
range of sensors, computer units, cameras, GPS devices,
and receivers. These devices have applications in military
and civilian sectors [2], [3]. In certain scenarios, UAVs
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can be mobile base stations integrated with Mobile Edge
Computing (MEC) capabilities. They collect data from
a specific area, process it, obtain the result, and then
transmit it back to users and other nearby drones [4].
UAV network deployment can be faster than establishing
traditional network infrastructure systems. Hence, utilizing
UAVs as the foundation of mobile infrastructure networks in
remote areas proves advantageous [5].

MEC servers can be positioned at different locations near
the source of data, such as base stations, aggregation points,
customer premises, wireless access points, or even drones.
MECs play an important role in processing, analyzing,
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and storing data that require low latency or are location-
specific [6]. Having servers placed close to where the data
are generated provides several advantages. This results in a
lower latency for applications since the data do not have to
travel long distances. Users can still access services even if
the cloud or internet goes down. It also enhances the overall
user experience for latency-sensitive applications [7]. This
proximity is especially helpful for technologies that involve
Augmented Reality (AR), Virtual Reality (VR), the Internet
of Things (IoTs), video analysis, and similar areas. Since
MEC servers are near network edges, they can handle the
real-time processing and analytics needs of these emerging
technologies more effectively compared to remote cloud
servers [8].

Despite considerable research efforts, comprehensive
assessments of optimization approaches for UAV offloading,
considering the interplay between aspects such as commu-
nication cost, energy consumption, end-to-end delay, and
security protection are lacking [9]. Again, the dynamism
introduced owing to rapidly changing UAV locations and het-
erogeneous edge infrastructures demands efficient solutions.
UAVs reduce network congestion, speed up data analysis, and
improve response times. However, limited resources on edge
devices can lead to performance issues during peak traffic.
MEC has extensions for next-generation networks such as
5G and 6G [10], including Vehicular Edge Computing (VEC)
where roadside units act as edge servers for vehicles [11].
Task offloading to edge servers helps reduce delays and
energy consumption. Additionally, UAVs can serve as MEC
units, bringing computing power closer to users, vehicles, and
IoT devices [12].

With advancements in battery, processor, and wireless
technologies, UAVs are being increasingly deployed for var-
ious applications across several domains. However, resource
constraints on UAV platforms pose significant challenges
for the onboard execution of computationally intensive
and latency-critical tasks. Offloading partial or complete
workloads from resource-constrained IoTs or drones to
powerful edge/cloud servers has emerged as a promising
solution [13]. However, optimizing the offloading process
in UAV environments involves addressing unique challenges
arising from intermittent connectivity, high mobility, and
security vulnerabilities [14]. Several techniques have been
proposed that focus on minimizing the execution latency and
cost of developing UAV as MEC [15] while maximizing
energy efficiency and accounting for factors such as varying
wireless channels, dynamic trajectories [16], and location
privacy [17]. Meanwhile, offloading sensitive tasks and data
to third-party platforms introduces new security and privacy
concerns [18].

Research on UAV-enabled MEC has focused on various
aspects, including offloading optimization, trajectory plan-
ning, energy efficiency, latency reduction, and resource allo-
cation. Mathematical techniques such as sequential convex
approximation (SCA), game theory, and deep Monte Carlo
tree algorithms have been proposed to optimize offloading
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FIGURE 1. Task offloading in UAV-assisted MEC environment with
multiple UAVs (this figure is partially adapted from [24]).

decisions and enhance security and computing capacity [19].
Additionally, machine learning and Artificial Intelligence
(AI) techniques as Deep Reinforcement Learning (DRL) have
been employed to predict the positions of ground-based users
and UAVs, optimize task offloading, and improve energy
efficiency. The use of UAVs in 5G mobile networks has
also been explored to reduce end-to-end latency and improve
communication reliability [20].

UAV-MECs have significant applications in various
domains such as smart cities, smart agriculture, AR/VR,
smart homes, smart healthcare, smart industries, and smart
traffic [21], as illustrated in Figure 1. In smart cities,
MEC enables real-time interaction, local processing, delay
reduction, improved spectral efficiency, improved QoS
and QoE, network demand prediction, improved secu-
rity and privacy, virtualization and service orchestration,
energy efficiency, efficient data management, high data
rates, high availability, and customized services [22], [23].
UAVs, on the other hand, assist in Ultra-Reliable Low-
Latency Communications (URLLC), particularly in AR/VR
systems. UAV-MECs are used for real-time monitoring,
firefighting, disaster management, military applications, and
agricultural operations, providing solutions through their
ease of movement in three-dimensional environments. The
combination of UAVs and MECs offers immense potential
for enhancing efficiency, safety, and effectiveness in these
domains [23].

A. MOTIVATION AND CONTRIBUTION OF THE STUDY

There is a lack of systematic analysis of the current state
of using UAV-MEC task offloading in 5G networks. Due to
the importance of this topic and the absence of a systematic
review, we conducted a Systematic Mapping Study (SMS) to
explore and analyze the utilization of UAVs as MECs for exe-
cuting offloaded data. The objective is to analyze the usage of
task offloading in UAV-enabled MEC networks, focusing on
architecture, UAV-MEC-related scenarios, techniques, task
types, and open issues. Our intention is not to propose new
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methods or tools, but to conduct an SMS using the updated
guidelines to analyze literature published between January
2019 and December 2023 related to data offloading in UAV-
enabled MEC networks.

In contrast to comprehensive surveys and Systematic
Literature Reviews (SLRs), SMSs do not aim to synthe-
size evidence. Researchers may choose to conduct SMSs
instead of literature surveys or SLRs for several reasons,
including mapping the research field, identifying research
gaps, providing a foundation for future research, handling
diverse literature, and conducting exploratory research. The
SMS provides an overview of the existing literature and
identifies the extent, nature, and distribution of research on
a specific topic. This mapping helps researchers understand
the landscape of the field and identify areas that have been
extensively studied or gaps that require further investigation.
These gaps represent areas where limited research has been
conducted or where further exploration is needed. Identifying
research gaps can guide future research efforts and help
researchers focus on areas that have not been extensively
studied [24], [25]. For example, instead of addressing
every specific challenge, its reasons, and possible solutions
regarding task offloading in UAV-MEC networks, we used
a methodology based on updated SMS guidelines [25] to
generate incidents, concepts, and categories. The outcome is
a classification of challenges with illustrative examples.

The process of conducting an SMS involves searching for
relevant studies on specific topics from sources such as the
ACM Digital Library, IEEE Explore, and Science Direct,
selecting studies based on predetermined criteria through
titles, abstracts, and keywords, extracting original content
from the selected studies, and analyzing the extracted data
to answer research questions. This SMS serves as an initial
reflection on the research and practice conducted in the
past five years regarding task offloading in UAV-enabled
MEC. This SMS presents task offloading architectures in
UAV-MEC that provide a framework for categorizing and
organizing different aspects of UAV-MEC offloading. The
scenarios, task types, and core network topics for task
offloading in UAV networks are presented. This study
highlighted the open issues in the UAV-enabled MEC
offloading ecosystems. We believe that this approach will
help researchers by providing a clearer and smoother path to
navigate through the emerging trend of using UAV-MECs for
task offloading.

This systematic mapping review provides novel insights
by analyzing the research trends published over five years to
understand research trends in UAV-MEC offloading, identify
use case scenarios and architectures, classifying addressed
topics and explore techniques, recognize research focus
areas based on task types, and summarizing challenges and
open issues requiring future work to guide the field and
uncover gaps. By addressing these seven questions, this
review provides insights into the key aspects, scenarios,
technical areas, and remaining deficiencies in this emerging
domain.
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The main contributions of our SMS paper are to answer
seven research questions (in Section III) as follows:

o The SMS can provide a high-level understanding of
the volume and trends of research on computation
offloading in UAV-MEC networks over the past 5 years
by mapping publications by type and source. This
approach helps assess the maturity and activity levels.

o It can identify and categorize the different use case
scenarios explored in the literature for using UAV
task offloading in MEC networks and summarize the
various architectures proposed in existing works for task
offloading between UAV-MEC platforms and terminal
devices.

o The core topics addressed in this research area can
be classified and quantified based on concepts in
selected papers. Additionally, techniques for offloading
decisions and enhancement explored in primary studies
can be grouped to identify popular and less investigated
methods.

o The literature can be mapped based on the types of
tasks considered for offloading to UAV-enabled MEC
platforms to recognize the focus.

« Challenges and open issues that are briefly discussed but
need further research can be summarized based on the
gaps identified in the reviewed literature.

This study provides a valuable overview of the current state
of research in UAV-MEC for task offloading, highlighting the
key open issues in this area. It also identifies areas where
further research is needed to fully realize the potential of
UAV-MEC for improving wireless communication networks.
The taxonomy facilitates the organization and mapping of the
literature in a coherent framework to achieve the objectives of
the SMS study, as illustrated in Figure 2.

In this survey, an SMS review of UAV-enabled MEC
computation offloading is conducted, and it is organized as
follows:

eSection II: Related Work.

eSection III: Methodology.

eSection IV: Distribution of Selected Studies on Task
Offloading in UAV-Enabled MEC.

eSection V: Scenarios for Using Task Offloading in UAV-
Enabled MEC.

eSection VI: The Architecture of Task Offloading in UAV-
Enabled MEC.

eSection VII: Core Objectives of Task Offloading in UAV-
Enabled MEC.

eSection VIII: Techniques Used to Enhance Task Offload-
ing in UAV-MEC.

eSection IX: Types of Tasks Offloaded to UAV-MEC.

eSection X: Open Issues on Task Offloading in UAV-MEC.

eSection XI: presents the conclusions.

Il. RELATED WORK
In this section, we discuss the relevant systematic survey
related to MEC data offloading.
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FIGURE 2. Systematic mapping study taxonomy.

The authors of [25] have conducted a survey on
computation offloading approaches in MEC from the
viewpoint of machine learning. The surveys have categorized
the existing research into three groups: reinforcement
learning-based, supervised learning-based, and unsupervised
learning-based mechanisms. The authors evaluated and
compared these categories based on several performance
metrics, case studies, techniques, and evaluation tools used
in each approach. Additionally, a survey [26] presented
a systematic literature review on UAV-based Internet of
Vehicles (IoV). A taxonomy was developed to organize
different perspectives on the UAV-based IoV. Five research
questions about the UAV-based IoV were answered by
explaining the metrics used and presenting the objectives,
techniques, and scenarios considered in relevant papers.
In [27] on the other hand, the authors have conducted a
systematic survey on secure communication in IoT-based
UAV networks. Papers on existing attacks, limitations,
and recommendations are analyzed. Physical/logical attacks
and prevention schemes such as trajectory planning
and lightweight authentication are discussed. Research
challenges and areas for further study are identified.
Furthermore, a survey [28] presented a systematic survey
that specifically focused on reinforcement learning and deep
reinforcement learning approaches for task offloading in
MEC systems. The authors have evaluated and classified the
relevant research papers based on various criteria, including
use cases, network architectures, objectives, algorithms,
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decision approaches, and time-varying characteristics.
To assist readers in identifying relevant papers based on spe-
cific features, the survey includes tables summarizing the key
information.

On the other hand, [29] has conducted a systematic
review of machine learning use case scenarios in IoDs,
discussing current technologies and challenges. Papers on
different machine-learning techniques used for tasks such
as path planning, target tracking, and anomaly detection
in drone networks were surveyed. In addition, the authors
of [30] presented a systematic review of machine learning-
from task offloading point of view in edge and fog
computing. This topic discussed in papers using tech-
niques such as deep learning, reinforcement learning, and
swarm intelligence for task allocation, and resource man-
agement. It covered objectives, architectures, algorithms,
and open challenges. The survey [31] also performed a
systematic mapping study on edge computing. It’s classified
contributions according to the computing model, application
domain, edge resources, and technical focus to identify
active research areas and gaps. Another SLR survey [32]
surveyed reinforcement learning methods for computation
offloading and classifying papers based on network models,
objectives, algorithms, and solution approaches. It’s aimed
to provide a comprehensive overview of RL applications
and existing literature in this area to help identify open
challenges. For instance, the work [33] presented an SLR
on UAV- MEC that investigated and studied data on the
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TABLE 1. A comparison of systematic review related to edge computing.

Refs. Type of network Publication Year security Review type Open issue offloading UAV Covered
Year
[25] Machine learning- 2020 Not Systematic presented presented Not 2013-2020
offloading in MEC presented literature review presented
[26] UAV-based Internet 2023 presented  Systematic literature ~ presented Not presented Not 2018-2022
of Vehicles review presented
[27] IoT-based UAV 2023 presented  Systematic literature presented Not presented ~ presented ~ 2018-2023
review
[28] Reinforcement 2023 Not comprehensive presented presented presented 2020-2021
learning in MEC presented survey+ systematic
[29] Internet of drones- 2023 Not Systematic literature presented Not presented Not 2020-2021
machine learning presented review presented
[30] Machine learning- 2023 Not Systematic Not presented presented Not 2015-2022
Offloading in Edge presented literature review presented
and Fog computing
[31] Edge computing 2023 Not Systematic mapping presented presented Not 2001-2019
presented study presented
[32] Reinforcement 2023 presented Systematic presented presented Not 2017-2021
learning for literature review presented
offloading MEC
[33] UAV-enabled MEC 2022 presented Systematic presented Not presented ~ presented 2016-2021
literature review
[34] Placement in MEC 2022 Presented Systematic presented presented Not 2017-2021
literature review presented
[35] Edge Computing 2022 Presented A Systematic Not presented presented Not 2010-2020
Lecture Study presented
[36] UAV Security 2022 Presented Systematic presented Not presented  presented 2015-2021
review
[37] UAV-aided MEC 2022 Presented  systematic literature Presented Presented Presented  2019-2022
network security review
This survey  Task offloading in presented  Systematic mapping presented presented presented 2019-2023

UAV-enabled MEC

study

current state of the art or preferred reporting items. The
study has categorized research in the UAV-MEC domain
into various categories, such as energy efficiency, resource
allocation, security, architecture, and latency. Moreover, the
review [34] identified the challenges faced in dynamic service
placement in MEC, such as resource allocation, service
migration, and load balancing. The review highlighted
the importance of considering factors such as latency,
energy efficiency, and network conditions in dynamic
service placement decisions. Different application scenar-
ios for dynamic service placement in MEC explored,
including smart cities, IoT, and vehicular networks. The
tudy [35] proposed a systematic study for hybrid intel-
ligent Non-orthogonal Multiple Access (NOMA) system
for next-generation millimeter-wave (mmWave) end-edge
cloud vehicle systems that incorporated high-throughput
satellite, edge-founded station, and end-vehicle nodes.
The researchers also explored the application of NOMA
in various domains, such as Radio Access Networks
(RANS), video coding, vehicular networks, and MIMO-MEC
systems.

To address security aspects, the review [36] mapping
over 100 relevant studies published between 2015 and 2021,
provided a systematic perspective on the state of research
addressing vulnerabilities in drone technologies. It was
identified major trends and highlighted ongoing challenges
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guiding further research toward developing robust counter-
measures against drone related threats. The review [37]
analyzed main databases to map contributions based on
security mechanisms such as authentication, access con-
trol and encryption. Findings were discussed according
to categories such as authorization techniques and intru-
sion detection methods. Additionally, the paper identified
challenges requiring ongoing efforts and potential future
directions.

The lack of a systematic mapping study makes it difficult
for researchers to identify the key findings and gaps in
the research on UAV-MEC computation offloading. It also
makes it difficult for researchers to stay up-to-date on
the latest developments in this field. There have been
several surveys and studies on the topic of using UAVs
as MECs for computation offloading. However, it appears
that there are no recent systematic mapping studies specif-
ically focused on this emerging trend. To the best of our
knowledge, our systematic mapping study is the first in
this field. It aims to provide a comprehensive overview
of the major trends and research directions in UAVs for
task offloading. The study covers seven research questions
to address various aspects of this topic and identify any
gaps or areas where further investigation is needed. Table 1
provides a comparison between existing systematic literature
reviews.
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TABLE 2. Defined research questions (RQs).

Research question

Rationale

RQ1: What is the level of activity
in the area of task offloading
computing for UAV-MEC, and
how are the selected studies
distributed by reference type
across the publication year and
journal?

RQ2: What are the scenarios for
using UAV task offloading in a
UAV-enabled MEC network?

RQ3: What is the architecture of
task offloading in UAV-enabled
MEC?

RQ4: What are the main research
areas or topics within the field of
task offloading in the UAV-
enabled MEC network?

RQS5: Which techniques are more
commonly used in offloading
decision-making and enhanced
task offloading in the UAV-MEC
network?

RQ6: What are the different
types of tasks that can be
offloaded to  UAV-enabled
MEC?

RQ7: What are the open issues of
using task offloading in UAV-
enabled MEC?

To assess the current level of research and
overall trends in order to better understand
the appeal of task offloading in UAV-
MEC network, it would be helpful to
compare the volume of research across
different publication years and journals.
This can provide insights into the level of
maturity of task offloading in UAV-MEC.
There are many working areas related to
the topic of task offloading in the UAV-
MEC network. The answer to this RQ
helps researchers and practitioners
understand the current focus.

Through analyzing the relationships
between task offloading and UAV-MEC,
and the mapping of task offloading
technologies to those components, this
RQ intends to understand the architecture
of using task offloading in the UAV-MEC
network from a systematic viewpoint.

To gain insight into the current state of
research involving offloading in UAV-
MEC systems, it would be useful to
identify and categorize the different topics
that have been studied. An evaluation of
the distribution and frequency of
publications across these various research
areas could provide insight into which
topics have received the most focus to
date.

To better understand the decision-making
processes involved in offloading tasks to
UAV-MEC, it would be useful to identify
the primary techniques that have been
employed. These techniques could
include approaches such as reinforcement
learning, game theory, heuristics, and
others.

to explore the potential benefits and
possibilities of leveraging UAV-enabled
MEC for task offloading. By identifying
the types of tasks that can be offloaded, we
can optimize resource allocation, reduce
latency, and expand the overall
performance of MEC networks.

Through identifying the open issues of
using task offloading in the UAV-MEC
network, this RQ helps researchers form
new research directions in this area and
practitioners become aware of the weak
points of using task offloading in UAV-
enabled MEC.

ill. METHODOLOGY

Drones have recently received much attention in the liter-
ature, primarily in the engineering, military, and computer
science fields. For this paper, we have expressed our
interest in investigating UAV-MEC offloading and related
issues. Importantly, we ignore any issue not related to task
offloading.

A. RESEARCH QUESTIONS

The objective of the SMS is to explore and analyze the state of
the art of task offloading in UAV-enabled MEC. We further
decomposed the objective into seven RQs. The answers to

the research questions are presented in the sequence that are
listed in Table 2.
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B. RESEARCH KEYWORDS
When choosing research keywords for a systematic mapping
study on task offloading in UAV-MEC, it is important to
consider the specific focus and scope of the study. The
main concepts include “task offloading” “UAV (Unmanned
Aerial Vehicle),” and “MEC (Mobile Edge Computing).”
Generate a list of related terms and synonyms for each
main concept. For “task offloading,” we include terms
such as “computational offloading,” or “offloading decision-
making. The terms from each main concept to create potential
research keywords were combined. We combine ‘‘task
offloading” with “UAV” and “MEC” to create keywords
“UAV task offloading,” “‘task offloading in UAV networks,”
or “MEC-enabled task offloading.” drone, unmanned aerial
vehicle, mobile edge computing, MEC, edge computing,
fog computing. In conclusion, we use the terms: UAV task
offloading

e Task offloading in drone networks

e Computational offloading in UAV-MEC

e Task offloading decision-making in UAV-MEC net-

works
e MEC, or fog computing, enables task offloading in UAV
networks.

C. INCLUSION AND EXCLUSION CRITERIA

We used the following inclusion criteria to choose studies

from the database search results based on [38] and [39]:

1. The paper is about task offloading in MEC-enabled in
UAVs.

2. The paper was published between January 2019 and
December 2023.

3. Selecting papers with high technical quality for the task of

offloading in UAV-MEC.
The following exclusion criteria were used:

El: The paper addresses either task offloading or the UAV
separately.

E2: The paper focuses on the topic of task offloading
in drones and MEC. Specifically, it explores the concept
of using UAVs as Internet of Drones (IoDs) framework to
offload data to ground MEC.

E3: The paper mentions offloading in UAV-MEC without
going into detail, implying that no data can be extracted to
answer the RQs.

E4: The paper is gray literature (non-peer-reviewed mate-
rial such as newsletters, magazine articles, and preprints).

ES: The paper is written in a language other than English.

E6: The paper is a secondary study (e.g., literature review,
survey, and systematic review).

D. SEARCH STRATEGY

One of the major factors for such a surge in the published
literature is the growing contributions and collaboration of
UAVs in data offloading to UAV-MEC. The study execution
process is shown in Figure 3, which follows PRISMA
2020 [40]. In Science Direct, we created a search string
consisting of a keyword search for “UAV,” which yielded
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FIGURE 3. PRISMA research study databases and inclusion/exclusion factors of article selection.

24,422 documents. We then limited the results to the assigned
subject offloading, which yielded 13,590 documents, and
we limited the results to subject task offloading, which
yielded 6,736 articles. We narrowed the search to UAV
task offloading journal articles, conference papers, or book
chapters (666 documents), and then to articles published
in the last five years, beginning in January 2019 (663
documents). Finally, we eliminated review articles and
editorial reports, resulting in a total of 153 documents.
We ran the search again in IEEE Xplore, ACM, Wiley,
and Springer to obtain 322 articles. Then we preformed
snowball searching from libraries of other organizations,
such as UCL LIBRARY SERVICES, as well as citation
search to obtain 155 articles. After the search and selection
phases, as shown in Figure 3, we identified and collected
477 relevant studies on the topic of task offloading in
UAV-enabled MEC.

Other organizations, such as the UCL library service and
citation searching, provided access to a wider range of
academic publications beyond the scope of Scopus and the
Web of Science. This helped uncover additional relevant
articles that may have been omitted from the mainstream
databases. These databases also involve examining the
reference lists of key papers retrieved from the initial
searches. Any publications cited in these reference lists
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that met the eligibility criteria were also included in the
mapping study. This backward snowballing technique helped
identify important works related to task offloading in UAV-
MEC networks that were found through library catalogs
alone [41].

IV. DISTRIBUTION OF SELECTED STUDIES IN TASK
OFFLOADING IN UAV-MEC NETWORKS

This section reports the answer to RQI1. The statistical
analysis of the number of publications in different years is
presented, along with the percentage of studies on different
reference types. Also, most journal names that are published
on task offloading in UAV-MEC. Furthermore, the authors
named connected to key words and countries. The number
has increased steadily since 2019 and reaches a peak in
2023, as shown in Figure 4. The number of studies grew
substantially annually during this period. In Figure 4, the
distribution of 477 publications from 2019 to 2023 is shown.
Overall, there seems to be a dramatic increase in the number
of publications on task offloading in UAV-MEC in 2022 and
2023. The exaggerated increase in the number of publications
in task offloading suggests a growing interest, research
activity, and contributions to the field. As the field continues
to evolve and mature, it is expected that the number of
publications will continue to increase, reflecting ongoing
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advancements, discoveries, and applications in UAV-MEC
task offloading.

Figure 5 shows the number of articles published in a
specific journal, providing a visual representation of its
publication trends over time. Figure 5 provides a visual
representation of the journal’s productivity and growth over
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the five-year period. According to Figure 5, the journal with
the highest number of published articles on task offloading
in UAV-MEC is the IEEE Internet of Things, with a total of
59 articles.

This indicates that the journal has a strong focus on
this research area and has been actively publishing related
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FIGURE 6. Mapping for authors with keywords and countries using VOSviewer.

studies. The second journal mentioned is IEEE Transactions
on Vehicular Technology, with 34 articles. This journal
also demonstrates a significant interest in task offloading in
UAV-MEC. The third journal, IEEE Access, has published
20 articles on the topic. While the number of articles is
lower than that of the first two journals, it still signifies a
notable contribution to the field. It’s important to note that
Figure 5 only provides information for journals with six or
more articles published on task offloading in UAV-MEC.
If other journals have published fewer than six articles, they
may not be included. This could explain why there might
be journals missing from the visualization. The VOSviewer
map [42] Figure 6 represents the connections between
authors, keywords, and countries that have published more
than 3 articles in a UAV working as an MEC for computation
offloading. The size of the nodes (circles) represents the
number of publications; it’s clear that reinforcement learning
has the greatest one, and the thickness of the lines (edges)
represents the strength of the connection between two
nodes. According to our map, China clearly has the highest
publication rate among the other countries. This means that
Chinese authors have published more articles in UAVs as
MEC for task offloading research than authors from other
countries.

V. SCENARIOS FOR USING TASK OFFLOADING IN
UAV-ENABLED MEC

This section reports the answer to RQ2. With the inte-
gration of MEC technology, UAVs can also serve as
MEC servers, providing data processing services for nearby
terminal devices. When ground-based stations are busy
or unable to process user data, users can offload their
data processing tasks to the MEC server carried by
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the UAV. This offloading reduces the bandwidth pres-
sure on ground-based stations and enables efficient data
processing.

The scenarios of task offloading to UAV-MEC included the
following:

A. EMERGENCY/DISASTER RESPONSE SITUATIONS

UAVs carrying computing resources can act as floating MEC
platforms to provide on-demand computation and networking
to disaster relief teams. This helps deliver services when
ground infrastructure is damaged [43]. The author in [44]
proposed a solution for the Deep Deterministic Policy
Gradient (DDPG) and Long Short-Term Memory (LSTM)-
based task offloading and resource allocation algorithms for
UAV-assisted LEO satellite edge computing, which show
promise for emergencies. The algorithm utilized RL and
LSTM to optimize task allocation and resource allocation in
real time. By considering the state of the system and previous
observations, the algorithm can make informed decisions
on task offloading and resource allocation, considering
factors such as computational task size and satellite resource
availability.

B. LIVE STREAMING/VIDEO ANALYTICS

UAVs fitted with edge servers can process and analyze live
video/audio streams from wearables and cameras on the
ground to detect events and relay insights in real-time. This
helps with tasks such as search and rescue, surveillance,
crowd monitoring, etc. [45]. UAVs with edge servers help
locate missing people by continuously analyzing thermal
camera feeds and automatically detecting human signatures
using Al models during search operations. For example,

VOLUME 12, 2024



A. A. Baktayan et al.: Systematic Mapping Study of UAV-Enabled MEC for Task Offloading

IEEE Access

the work [46] explored the use of edge-to-fog computing
architecture to enable efficient data processing and commu-
nication among drones in a swarm. The video task involved
demonstrating the implementation and performance of the
proposed edge-to-fog collaborative computing framework
using a swarm of drones. This task may include showcasing
the communication protocols, data processing algorithms,
and coordination mechanisms employed in the system. The
video task aims to provide a visual representation of the
collaborative computing capabilities of the swarm of drones
and highlight the benefits of using edge-to-fog computing in
this context.

C. TEMPORARY NETWORK EXTENSION

UAVs with MEC hardware can provide temporary MEC
capabilities in areas with network outages or during mass
gatherings where ground infrastructure gets overloaded.
Their mobility helps extend coverage. UAV-MECs placed in
rural areas during events can function as aerial Wi-Fi or cel-
lular hot-spots connected to edge servers onboard to deliver
internet access and low-latency services to end users [47]. The
workflow in [48] involved task offloading from the terminal
device to the UAV-MEC, task processing in the UAV-MEC
system, and potential further offloading to Base Stations (BS)
with the help of a Software-Defined Network (SDN). The
proposed framework utilized DRL-based control methods
to optimize resource allocation, including computational
resources, bandwidth, and storage, based on task require-
ments and network conditions. The goal is to enhance the effi-
ciency of task processing and improve the overall coverage
extension.

D. MOBILE VR/AR APPLICATIONS

UAV-MEC servers deployed near users can support mobile
VR/AR applications by hosting edge services and processing
graphical/sensor data with low latency. This enhances
interactive experiences [49]. The research [50] focused
on addressing the limitations of IoT devices in terms of
processing power and battery life for VR/AR applica-
tions by leveraging UAV-MEC with Intelligent Reflection
Surfaces (IRS) infrastructure. The proposed optimization
framework considers factors such as time, power, phase
shift design, and local computational resources to optimize
the placement of UAV-MEC-IRS and allocate resources
efficiently.

E. INDUSTRIAL IoT

UAV-MECs enable deployment of edge services closer to
terminal devices in changing environments such as factory
floors, etc., allowing real-time offloading and processing of
IoT data with low latency. In addition, UAV-MEC platforms
above factory floors run Al/Meaning Learning (ML) models
on sensor data from machinery in real-time to predict
failures and maintenance needs [51], [52]. The proposed
approach in [52] for computation-intensive Industrial Internet
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of Things (IIoT) applications began by partitioning the
application into a directed acyclic graph (DAG) comprising
multiple collaborative tasks. Subsequently, a joint opti-
mization problem is formulated based on the models of
processor resources and energy consumption for the task
offloading scheme. To optimize this problem, a cooperative
resource allocation approach is proposed to address the
constraints of resource availability and communication
latency.

F. VEHICULAR EDGE COMPUTING (VEC)

UAVs equipped with edge capabilities can collaborate
with connected vehicles to dynamically form aerial-ground
vehicular clouds for sharing computation, data, and wireless
access [53]. The approach in [54] proposed a DRL-based
approach to optimize channel sharing and task offloading
decisions in impermanent UAV-assisted VEC networks. The
proposed learning algorithm considers channel conditions,
computing resources, and task requirements to make deci-
sions that minimize task completion time while ensuring
fair resource allocation. The performance of the planned
approach is estimated through simulations, which demon-
strate its effectiveness in improving network performance
and reducing task completion time compared to traditional
approaches.

G. SMART AGRICULTURE

UAV-MECs equipped with edge servers analyze fields for
moisture and nutritional deficiencies and detect diseases
in crops/livestock in real time. Insights help optimize
yields [55]. The proposed approach [56] used graph neural
network reinforcement learning (GNN-RL) to model the
heterogeneous network as a graph, which includes UAV-
MECs and terminal devices. The RL algorithm is then used to
learn the optimal task offloading decisions based on the graph
representation. The GNN-RL approach took into account
the heterogeneity of the network, including the different
computing capabilities and communication resources of the
nodes, as well as the dynamic nature of the network due to the
mobility of UAVs. The performance of the proposed approach
is evaluated through simulations, which demonstrate its
effectiveness in improving the network performance and
reducing task completion time compared to traditional task
offloading approaches.

H. SMART CITIES

UAV-MEC platforms monitor traffic, infrastructure, and
stream analytics to authorities, enabling efficient resource
allocation and rapid emergency responses throughout chang-
ing urban environments. Road authorities employ UAV-MEC
to trace vehicle movements and detect jams/accidents via
real-time streaming analytics from overhead cameras at the
edge and routing traffic accordingly [57]. The proposed
life-cycle in [58] included the registration, authentication,
and offloading of vehicles to UAV-MECs. The authors used
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blockchain technology to warrant the security and privacy of
the data exchanged between the vehicles and UAV-MECs in
smart cities. The proposed framework also includes a smart
contract-based offloading mechanism that enables vehicles
and UAVs to offload their tasks to the edge servers in a
secure and efficient manner. The simulations demonstrate
its effectiveness in improving the security and efficiency of
UAV-assisted vehicle networks.

I. EMERGENCY RESPONDER TRACKING

UAVs equipped with edge servers can track the locations of
first responders such as police, and firefighters, etc. in real-
time during disasters/emergencies. This helps coordinate
relief efforts. Furthermore, UAVs deployed with edge capa-
bilities can monitor endangered animal populations using
sensors, cameras, and computer vision models run at the
edge. This enables conservation authorities to study patterns
and protect wildlife. Additionally, law enforcement agencies
can use UAV-MEC systems to trace suspected criminals
on the run. Onboard edge servers process surveillance
footage and guide the drone’s trajectory in pursuit [59],
[60]. For instance, the framework in [61] consisted of a task
allocation algorithm that assigns search tasks to different
UAVs based on their remaining energy and distance to the
search area, and a communication scheduling algorithm that
minimizes the communication overhead between the UAV-
MEC:s and the ground edge server. The edge server performs
computationally intensive tasks such as image processing
and target detection, while the UAV-MECs perform low-
level tasks such as data collection and preprocessing. The
proposed framework also included an energy management
mechanism that monitors the energy consumption of the
UAVs and adjusts their speeds and search patterns to
minimize energy consumption. Table 3 shows the comparison
between different scenarios of task offloading in the UAV-
MEC network.

VI. THE ARCHITECTURE OF TASK OFFLOADING IN
UAV-ENABLED MEC

This section reports the answer to RQ3. The classification
system for UAV-MEC is based on their mobility, or hierarchy.
The UAV-MEC can be classified by mobility into two main
categories: static and mobile.

A. STATIONARY UAV-MEC

This category refers to UAV-MEC systems where the UAV
remains stationary at a fixed location. Stationary UAV-MEC
can be further classified into different subcategories:

1) Fog-based UAV-MEC: In fog-based UAV-MEC, the
edge infrastructure consists of fog nodes that are
deployed close to the terminal devices, or IoTs. These
fog nodes provide computing and storage capabilities,
enabling efficient task offloading and processing in real-
time. Communication between the terminal devices,
or IoTs, and UAV fog nodes is typically wireless and
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2)

3)

low-latency [95]. The paper [96] proposed a framework
for multi-access computation offloading in marine
networks using UAV-MECs and hybrid NOMA and Fre-
quency Division Multiple Access (FDMA) techniques.
The framework enabled multiple ships to offload their
computation tasks to a UAV-mounted fog server via
NOMA and FDMA for multiple access and resource
allocation. The authors formulated the computation
offloading problem as a Mixed Integer Nonlinear Pro-
gramming (MINLP) problem and proposed an algorithm
based on alternating optimization and successive convex
approximation to solve it. The proposed algorithm
iteratively optimized the task offloading decisions,
NOMA power allocation, and FDMA sub-channel
allocation to minimize the total energy consumption of
the network while meeting the latency requirements of
the applications.

Collaborative UAV-MEC: In collaborative UAV-MEC,
multiple stationary UAVs work together in a coordi-
nated manner to process offloaded tasks. The UAVs
within the collaborative groups may distribute tasks
among themselves based on factors such as workload,
proximity, or resource availability. This collaboration
enhances task execution efficiency and enables load
balancing [97]. The objective of [94] was to minimize
the overall delay of terminal device tasks by optimizing
the task offloading ratio, the hovering position of the
UAV-MEC, and the computing resource allocation of
the Electric Vehicle (EV) and UAV-MEC. Authors
formulated the problem as a Nonlinear Programming
(NLP) problem and then decomposed it into EV-related
and UAV-MEC related subproblems using the Block-
Coordinate-Descent (BCD) method. For the EV-related
subproblem, authors determined the optimal offloading
ratio by equating the computing time on the UAV
to its offloading time and proved the feasibility of
this method. For the UAV-related subproblem, it used
NOMA and Successive Interference Cancellation (SIC)
techniques to enhance communication efficiency. They
then obtained the optimal hovering position by using
the Successive Convex Approximation (SCA) tech-
nique twice to convert this subproblem into a convex
problem.

Tethered UAV-MEC: Tethered UAV-MEC involves
UAVs that are physically connected to the ground
through a tether, which provides power and data
connectivity. The tethered UAV can process offloaded
tasks for the nearby terminal devices while remaining
in a fixed position. This configuration allows for longer
flight times and continuous offloading without concerns
about battery life. Figure 7 shows the architecture of
task offloading in UAV-MEC. The paper [64] was
providing MEC services in zones with no infrastructure
using a tied UAV-MEC system. The framework aims
to minimize the energy consumption of the UAV
and terminal devices while ensuring task completion
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TABLE 3. The key requirements and benefits of using UAV-MEC in different scenarios.

No Scenario Typical Application Key Requirements Benefits of UAV- Number Limitations Examples of
MEC of related related
studies studies
1 Emergency  Disaster relief  Temporary connectivity, Rapid deployment, 30 Reliability and [62] [63]
Response coordination computing, and and location availability of [43] [64]
localization of responders  tracking with low UAVs/network [65]
latency during crisis
2 Live video  Surveillance and  Processing of real-time Real-time analysis 14 Latency [66] [67]
analytics event monitoring video/sensor feeds and insights over constraints, [68] [69]
large areas bandwidth [70]
limitations,
quality
degradation
3 Network Rural  connectivity = Aerial base stations, WiFi ~ Extends cellular 103 Finite battery/fuel, [71] [2]
Extension and event coverage hotspots coverage and regulatory [72] [73]
Internet access restrictions on [74]
airspace use
4 Mobile Immersive Fastrendering, sensor data ~ Enhances interactive 9 Requires high [49] [75]
VR/AR applications experiences bandwidth, low [76] [50]
latency
graphics/video
5 Smart Crop monitoring  Hyperspectral camera  Optimizes farm 5 Dependence on [77] [3]
Agriculture  analytics feeds, modeling operations yields weather, [78]
geographic scale
of deployment
challenges
6 Industrial Plant  maintenance Edge data processing and  Mission-critical 12 Large scale [79] [80]
IoT and quality control predictive maintenance support for deployment and [81]
manufacturing management
costs. Complex
integration
7 Vehicular Content sharing  Inter-vehicle resource  Augments ground 39 Reliability and [62] [82]
Edge ' connectivity sharing networks in sparse security of [83] [53]
Computing areas wireless backhaul ~ [84]
from fast moving
UAVs
8 Smart Traffic control,  Stream analytics, ~Supports  efficient 82 Density of UAVs, [85] [86]
Cities infrastructure computer vision models urban resource public acceptance, [87] 88]
monitoring allocation privacy/security at  [74]
large scale
9 Target Search and rescue and ~ Real-time object detection ~ Guides time-critical 23 Accuracy and [89]  [90]
Tracking wildlife monitoring classification operations with low reliability of [91] [92]
location services [93]

in all conditions

deadlines. The authors propose an energy-efficient
task scheduling algorithm that dynamically allocates
tasks to the UAV and terminal devices based on
their computing capabilities, energy consumption, and
communication latency. The algorithm considers the
tethered UAV’s limited mobility and energy constraints.
The authors also propose a novel energy harvesting
mechanism that uses solar panels to recharge the battery
of UAV-MECs.

B. MOBILE UAV-MEC

This category refers to UAV-MEC systems where the UAV
is mobile and capable of moving within a given area or
following a predefined trajectory. Mobile UAV-MEC can be
further classified into different subcategories:
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1) Fog-based UAV-MEC: In fog-based mobile UAV-

MEC, the terminal device and IoTs offload tasks to
nearby UAV-MEC fog nodes as they moves within the
network coverage area. The fog nodes provide com-
puting resources and support seamless task offloading
and processing during the UAV’s mobility [98]. For
example, the work [99] aimed to minimize the energy
consumption and delay of IoT devices while ensuring
task completion deadlines. The authors proposed a joint
optimization algorithm that dynamically allocates tasks
to UAVs and fog servers based on their computing
capabilities, energy consumption, and communication
latency. The algorithm considered the limited energy and
computing resources of IoT devices and the mobility of
UAV-MECs.
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FIGURE 7. Classification of UAV-MEC architecture.

2) UAV Swarm-enabled MEC: UAV swarm-enabled
MEC involves a group of mobile UAVs working
together as a swarm to collectively process offloaded
tasks. The swarm operates in a coordinated manner,
distributing tasks among the individual UAVs based on
swarm algorithms, communication protocols, and task
requirements. This approach enables parallel process-
ing, fault tolerance, and scalability [ 79]. For instance, the
work [100] aimed to minimize the latency and energy
consumption of the UAV-MEC swarm while ensuring
task completion deadlines. The authors propose a
DRL-based algorithm that dynamically allocates com-
puting tasks to UAV-MECs based on their computing
capabilities, energy consumption, and communication
latency. The algorithm considered the mobility and
collaboration of the UAV-MEC swarm, as well as
the uncertainty and dynamic nature of the surveil-
lance environment. Table 4 compares the mobility
architectures below:

Task sizes vary depending on the use case and application.
The latency and energy consumption values are estimates and
may vary depending on a variety of factors, including the spe-
cific implementation, network conditions, and environmental
factors. Because stationary UAV-MEC systems (fog-based,
collaborative, and tethered) do not require the UAV to
move, they have lower latency and energy consumption than
mobile UAV-MEC systems (fog-based and UAV Swarm-
enabled). Mobile UAV-MEC systems, on the other hand, can
provide greater flexibility and adaptability, as well as the
ability to offload tasks in real time while the UAV-MEC
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is in flight. Table 4 shows that the total number of papers
summed across these three categories for the UAV-MEC
(stationary), tethered UAV-MEC (stationary), and fog-based
UAV-MEC (mobile) is 477. It’s worth noting that the task
size can have an impact on latency and energy consumption.
Larger tasks, for example, may necessitate more process-
ing power and time, resulting in increased latency and
energy consumption. Smaller tasks may also necessitate
less processing power and time, resulting in lower latency
and energy consumption. The task offloading hierarchical
architecture in UAV-MEC can be classified by layer hierarchy
as follow:

1) Satellite-UAV-MEC Collaborative Architecture:
When necessary, UAVs with MEC capability can col-
laborate with satellites or the larger MEC infrastructure.
When satellite connectivity is available, UAVs can
communicate with satellites to exchange data, receive
updates, or transmit processed data to a larger network.
UAV-MECs can offload specific tasks or heavy data
to nearby MEC servers for more intensive processing
or to leverage additional computational resources
in scenarios where the large MEC infrastructure is
accessible [44]. Paper [116] proposed a collaborative
inference algorithm for UAV-MECs using a Low-Earth-
Orbit (LEO) satellite network. The algorithm aimed to
improve the accuracy and latency of image recognition
tasks for UAV-MECs by leveraging the computing
resources of the LEO satellite network. The authors
proposed a novel communication protocol that enables
efficient data transmission between UAV-MECs and
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TABLE 4. Comparison of different subcategories of UAV-MEC systems.

Typical Number of Limitations Examples of
Subcategory size of Latency Energy Consumption publications related studies
task
Medium 56 Limited coverage area due [100] [101][102]
to large Low Moderate (depending on the number to stationary position, [80][103]
(Fs‘iagt'it(’)":i:d )UAV'MEC G0M (<10 of fog nodes and their distance from single point of failure if fog
Y to>50 ms) the UAV) node goes down
M)
My Motk pening o e e Comtiaionnerbad (14110510
Collaborative UAV- & of UAVs in the collaborative group P
. (50 M (<10 .
MEC (stationary) to> 50 ms) and their distance from the edge
M) infrastructure)
. . . Restricted mobility due to  [64]
Tethered UAV-MEC Large Very Low (since the UAV is physically tether, additional
. >50 low (<5 connected to the ground and does not .
(stationary) . complexity from tether
M) ms) require battery power)
management
Small to 417 Handling offloads as UAV [77] [107] [108]
1 1 1 (o
Fog-based UAV-MEC medium Medium Modeirate to high (depending on the moves bet_wee_n coverage [109][110]
. (10-100 UAV's speed and the number of fog zones, maintaining
(mobile) (5Mto . . . backhaul g
<50 M) ms) nodes it needs to communicate with) ackhau cqnpectlvﬁy
during mobility
S 5 5
Small to . High (since the swarm requires 32 Coordination of large I l |1 l) 121 [13]
. Medium N L numbers of autonomous [114][81]
UAV Swarm-enabled medium (10-100 coordination and communication UAVs. contention as UAVs
MEC (mobile) (5Mto among multiple UAVs, which can ¥ .
ms) . . compete for wireless
<50 M) increase energy consumption)

resources

satellites, as well as a collaborative inference algorithm
that distributes the image recognition tasks among
multiple satellites.

2) Centralized UAV-MEC Architecture: A centralized
entity, such as a ground-base station or a cloud server,
manages the task offloading process in this architecture.
Although UAVs serve as relays or MEC servers,
decision-making and coordination are centralized [48].
The paper [117] examined the issue of offloading
computational tasks for Software-Defined Vehicular
Network (SDVN)-supported services in a UAV-enabled
Mobile Edge Computing MEC system. In this scenario,
a single UAV and a single edge server (ES) are
provided to handle the workload from vehicles moving
within a specific region. Each vehicle in the region
periodically submits requests to the UAV-enabled MEC
system until it exits the region, with each request being
treated as a computational task that can be processed
locally on the vehicle, on the UAV-MEC, or on the
ES. The problem model is formulated using multiple
communication and energy consumption models. The
main objectives are to minimize total time delays and
energy consumption. A dynamic scheduling framework
based on a greedy heuristic is proposed to solve the
problem under investigation.
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3)

4)

Distributed UAV-MEC Architecture: In a distributed
architecture, task offloading decision-making and coor-
dination are distributed among the UAV-MECs them-
selves. Each UAV-MEC can make independent deci-
sions based on local information and, if necessary,
collaborate with other UAV-MECs [79]. The paper [118]
proposed a distributed and collective intelligence
framework for computation offloading in aerial edge
networks, where multiple AVs are employed as flying
edge servers to provide computing services to terminal
devices. The framework aims to minimize the latency
and energy consumption of terminal devices while
maximizing the utilization of the UAV-MECs computing
resources. The authors proposed a distributed offloading
algorithm that enables the terminal devices to make
offloading decisions collaboratively and dynamically
based on the current network conditions. The algorithm
considered the computing capabilities, communica-
tion latency, and energy consumption of the UAV-
MECs and terminal devices, as well as the mobility
of the UAVs.

Hybrid UAV-MEC Architecture: A hybrid of cen-
tralized and distributed architectures that employs a
hierarchical structure in which some UAV-MECs serve
as coordinators or cluster heads, making decisions on
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TABLE 5. Comparison between hierarchy architecture of task offloading in UAV-MEC.

Reliance on Autonomy Number of Limitations Examples
Architecture  Coordination Scalability Vs publications of Related
Infrastructure .
Management studies
I ites f 21 High latency due to [122][123]
everages satellites for P . . added hop via satellite, ~ [124] [125]
Satellite- wider connectivity and L;I;lslel?t:y Reg:;;i;ﬁg?le Centralized dependence on space- [126]
UAV-MEC MEC/satellite resources infrastructu coordination based infrastructure
for intensive tasks coverage tirastructure Cost and complexity of
satellite integration
120 Single point of failure ~ [127]
Low if central node fails, [128]
oy Lo
Centralized Single controller handles Bottleneck as NO additional autonomy, bottleneclf and l 1: )l
S . infrastructure latency with long haul ~ [130]
UAV-MEC coordination scale increases easy - 5
needed backhaul, limited by [131]
management
coverage of central
controller
29
w2 el
Distributed Distributed coordination More scalable Self-reliant autonormy, overhead, challenges ( [133]
UAV-MEC protocols overhead in . ’ & o
coordination in resource
haring/task allocation
71 Complexity of [134] [67]
managing different ~ [68] [135]
frameworks, [136]
Hybrid . . Balanced selection of optimal
UAV-MEC Cluster heads p.rov1.de a Scailable with Self-reliant autonomy offloading strategy,
. layer of coordination hierarchy and . .
Architecture failure domains
management .
across centralized and
distributed
components
High 52 Coordination and [137]
UAV autonomy reliability across large  [138]
Swarm Collective intelligence Adapts to scale Selforeliant and numbers of UAVs, [139]
enabled through cooperation dynamically coordination interference and [114]
MEC through contention as swarm [57]
protocols size increases

behalf of a group of UAVs within their cluster. These
coordinators can communicate with one another to share
information and make higher-level decisions [119]. For
example, the framework in [120] consisted of a group
of UAVs that serve as flying edge servers to collect
and process data from IoT devices in a given area. The
authors proposed a clustering algorithm that groups the
IoT devices based on their spatial and communication
proximity and dynamically assigns a UAV to each
cluster to serve as the cluster head. The cluster
heads are responsible for collecting data from their
member devices, processing the data locally using the
UAV-MEC’s computing resources, and transmitting the
processed data to the central server. The proposed frame-
work also includes an energy-efficient data transmission
scheme that minimizes the energy consumption of
IoT devices by dynamically adjusting the transmission
power and data rate based on the channel conditions and
data requirements.
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5) Swarm UAV-MEC Architecture: In a swarm architec-

ture, a swarm of UAV-MECs performs task offloading
and resource allocation. The swarm’s behavior can be
dynamically adjusted based on the environment and the
tasks. This architecture leverages the collective intelli-
gence and cooperation of the UAV swarm to enhance
task offloading and resource distribution [100], [121].
For example, in the framework [122], several UAVs are
organized as edge servers to deliver computing services
to terminal devices. The authors proposed a cooperative
task offloading algorithm that enables terminal devices
to offload their computation-intensive tasks to nearby
UAV-MEC:s in a cooperative manner, thereby reducing
their computational burden and energy consumption.
The algorithm considered the computing capabilities,
communication latency, and energy consumption of
both terminal devices and UAVs. The authors also
proposed a UAV-MEC swarm formation strategy that
optimizes the positions and trajectories of the UAV-
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MECs to minimize communication latency and improve

computing performance. Table 5 compares hierarchy

architectures.
As shown in Table 5, the satellite-UAV-MEC leverages
existing infrastructure but relies on its availability. Central-
ization has the simplest management but limits scalability.
Distributed is most autonomous and scalable, but has
an overhead. Hierarchical methods balance autonomy and
scalability through layers. The UAV swarm architecture
dynamically adapts through cooperation [141].

VII. CORE OBIJECTIVES OF TASK OFFLOADING IN
UAV-ENABLED MEC

This section reports the answer to RQ4. This research
focuses on developing efficient algorithms and strategies for
determining which tasks from terminal devices should be
offloaded to UAV-based MEC servers. The following are
the primary or trending research topics in the field of task
offloading in UAV-enabled MEC networks:

A. COST

considering task offloading to UAV-MEC systems includes
evaluating the economic implications of offloading tasks
to the edge infrastructure [142]. Computational resource
usage, communication costs (e.g., bandwidth consump-
tion, data transfer fees), and infrastructure maintenance
expenses can all be included in the cost. The goal is
to minimize costs while meeting application require-
ments by optimizing task allocation and offloading
strategies [102], [143]. The paper [144] investigated a UAV-
enabled MEC system in which terminal devices offload their
computing tasks to UAV-MECs for processing. In scenarios
with multiple computing tasks, in order to minimize
computing costs, it is crucial to effectively allocate tasks
to devices. To tackle this challenge, the authors proposed
a Non-cooperative Game model-based Power Allocation
(NGPA) scheme, which aims to minimize transmission
energy consumption by determining the optimal power
allocation strategy for devices. Additionally, the problem
of task allocation was approached as a bilateral match
between devices and UAV-MECs to minimize overall
computing costs.

B. ENERGY MANAGEMENT

Energy efficiency is an important aspect of UAV-MEC
systems. UAVs are typically powered by small onboard
batteries, so effective energy management is critical for
maximizing flight time and operational capabilities [145].
Task offloading decisions can consider the energy con-
sumption of both the terminal device and the UAV-MEC
infrastructure to reduce energy consumption and extend
the operational lifespan of the UAV [146]. For instance,
the work [147] proposed an online distributed optimization
algorithm for energy-efficient computation offloading in air-
ground integrated networks. Terminal devices can offload
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their computational tasks to nearby UAV-MECs or ground
BSs for processing. The algorithm aimed to minimize the
total energy consumption of the network while meeting the
computation delay requirements of the devices. The authors
proposed a distributed optimization algorithm that enables
each device to make computation offloading decisions in
an online manner based on the current network condi-
tions. The algorithm considered the computing capabilities,
energy consumption, and communication latency of both
the devices and the UAV-MECs, or BSs. The authors
also proposed a pricing mechanism that incentivizes the
devices to offload their tasks to the most energy-efficient
UAV-MECs, or BSs.

C. LATENCY MANAGEMENT

The delay or response time experienced during task
offloading and processing is referred to as latency. Low-
latency communication between terminal devices and the
mobile edge infrastructure is critical in UAV-MEC systems,
especially for real-time or delay-sensitive applications [148].
Latency reduction ensures timely task offloading, quick data
processing, and efficient feedback transmission, allowing
for responsive and interactive UAV applications [149].
For instance, the work [150] focused on improving the
performance and efficiency of IoV systems by leveraging
the capabilities of UAVs and edge computing. This approach
utilizes DRL techniques to optimize the task offloading
process, where computational tasks are offloaded from IoV
devices to nearby UAV-MECs. By using DRL, the system can
learn and make intelligent decisions on when and where to
offload tasks, considering factors such as network conditions,
computational resources, and energy consumption. This opti-
mization aims to enhance the overall system performance,
reduce latency, and improve the quality of service for
IoV applications.

D. QoS (QUALITY OF SERVICE) ENHANCEMENT

Meeting specific performance requirements and service-level
agreements (SLASs) are important QoS considerations in task
offloading to UAV-MEC. Latency, reliability, throughput,
availability, bandwidth, task partitioning and scheduling,
and other relevant indicators are examples of QoS metrics.
To ensure the desired level of service and user satisfaction,
task offloading decisions should consider the applications
or users QoS requirements [151], [152].The authors [153]
proposed an approach that combines Improved Particle
Swarm Optimization (IPSO) with Deep Neural Networks
(DNN) to optimize the operation of UAV-MEC networks.
The objective is to provide efficient task offloading for
terminal devices while offering short-term network services
during emergencies. The scheme addresses the challenge
of making fast decisions in a changing environment. The
problem was formulated as a MINLP problem, considering
factors such as reducing terminal device energy con-
sumption, shortening terminal device latency, and ensuring
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fairness in offloading. The TIPSO algorithm is employed
to solve the problem, and a trained neural network is
utilized for making quick decisions based on high-quality
labeled data.

E. TASK COLLABORATION CONTROL

When several UAVs work together to process offloaded tasks,
this process is referred to as task collaboration. By facili-
tating fault tolerance, resource sharing, load balancing, and
more effective task execution, collaboration can improve
system performance. In a cooperative group, UAV-MECs
can assign tasks to each other according to workload,
proximity, resource availability, or predefined collaboration
algorithms [154]. For example, the work [155] proposed a
collaborative scheme among UAV-MEC:s to share the work-
load and provide computational services to devices outside
of traditional networks. The paper specifically focused on the
task topology of offloading in UAV-MEC networks, consid-
ering dependencies between subtasks. The authors presented
an optimization problem to minimize user latency by jointly
managing the offloading decision for dependent tasks and
allocating communication resources of UAV-MECs. In order
to solve this NP-hard problem, research divided it into
two subproblems: the offloading decision problem and the
communication resource allocation problem. A metaheuristic
approach was proposed to find a suboptimal solution for
the offloading decision problem, while convex optimiza-
tion was used for the communication resource allocation
problem.

F. TRAJECTORY CONTROL

Because UAVs are highly mobile, this field of study attempts
to solve the problems associated with controlling UAV-MEC
mobility in task offloading situations. The aforementioned
involves enhancing UAV trajectory planning, handover
protocols, and task migration tactics to guarantee smooth
task offloading and reduce disturbances resulting from UAV
maneuvers [156]. Reference [157] formulated trajectory con-
trol as a Markov decision process that can be solved via DRL.
The interaction between the agent and environment through
trial-and-error allowed for derivation the optimal trajectory
policies via DRL without a priori information about the envi-
ronmental dynamics. The author of [158] studied improving
the distribution of devices and planning the trajectory of
UAVs to enhance the performance of MEC systems. This
approach utilized matching theory, which is a mathematical
framework for solving optimization problems involving the
allocation of resources. By transforming the multi-objective
optimization problem into a single-objective problem using a
weighted-sum approach, the goal is to minimize the weighted
sum of the delay and energy consumption. The solution
involved decomposing the problem into subproblems and
solving them sequentially, considering factors such as the
UAV-MEC trajectory, computing resource allocation, and
time allocation.
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G. SECURITY MANAGEMENT

To ensure the confidentiality, integrity, and availability of
data and communications in UAV-MEC systems, security
management is critical. Secure communication connections,
authentication techniques, data encryption, access control
policies, and intrusion detection systems are all required
for task offloading to UAV-MEC. The implementation of
comprehensive security measures aids in mitigating potential
hazards and threats to the operation and sensitive data of
UAV-MEC networks [159], [160]. This reduces exposure
during transit. Edge resources such as UAV-MEC servers also
have fewer access points and smaller attack surfaces than
large clouds. Therefore, processing sensitive data locally at
the edge provides stronger protection against network attacks
and unauthorized access [161].

The use of UAV-MECs in networks allows for improved
data processing and communication capabilities, but it
also introduces challenges in task scheduling and resource
allocation. By leveraging blockchain technology, as in [162],
the proposed mechanism aimed to provide a decentralized
and secure solution for task matching, ensuring fairness
and transparency in the allocation process. This paper
explored the potential benefits and challenges of integrating
blockchain into UAV-assisted MEC networks and proposed
a multi-task matching mechanism to enhance the overall
performance and efficiency of the network. In Table 6, the
comparison of objectives for task offloading to UAV-MEC
is based on the search results. A multi-agent reinforcement
learning technique was implemented in [163] where UAVs
and edge servers are agents. The agents learn optimal policies
through interactions to minimize energy consumption while
meeting latency constraints. Contextual information such as
channel state, task types and edge workload is incorporated
through a context network.

As shown in figure 8, energy consumption minimization is
acrucial research objective in UAV-MEC task offloading. The
efficient utilization of energy resources is essential for the
successful operation of UAV-MEC networks. By minimizing
energy consumption, various benefits can be achieved, such
as prolonged flight time for UAV-MECs, increased battery
life, reduced operational costs, and improved overall system
performance [188]. According to Figure 8, energy, and
latency, which are major cost components, have the most
papers that aim to reduce both or one of them (energy
and latency). Improving QoS helps to reduce latency and
optimize resource/energy usage. Task collaboration and
trajectory control affect how tasks are assigned and UAVs
are maneuvered for offloading. Typically, the goal is efficient
resource management to minimize latency and energy
consumption. Even security management requires authenti-
cation and encryption, which adds to the overhead [189].
Therefore, while papers investigate various aspects, the
underlying goals are usually latency/energy optimization or
cost reduction.

In terms of cost, optimizing utility and dynamic pric-
ing models have been less explored than have technical
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TABLE 6. Comparison of the core research topics in task offloading to UAV-MEC.

Optimization Number of Limitations Example
Concept Description plime Key Factors Considered publications of Related
Objective
Study
79 Significant [163]
e s Computational resource infrastructure [101]
Economic implications of task Minimizing A . . )
Cost offloading to edee infrastructure costs usage and communication investment required for [164]
& & costs setting up UAV-MEC  [165]
networks at scale [166]
122 Limited battery capacity [167]
Efficient management of power s UAYV energy consumption, of UAVs constrains [168]
. Minimizing . . .
Energy consumption for UAVs and edge infrastructure energy operational time and [169]
. energy usage . .
infrastructure consumption computing resource [170]
availability [171]
79 Latency increases with [172]
Delfiy or response time experienced Minimizing Communication latency, multiple .hop.s of [173] [43]
Latency during task offloading and latenc data processine time communication between [174]
processing y P & UAVs, edge nodes and [175]
cloud
87 Maintaining SLAs for  [62] [176]
QoS (Quality  Performance requirements and Meeting QoS Latency, reliability, applications with [177]
of Service) service-level agreements requirements  throughput, availability stringent quality [178]
requirements [179]
48 Coordination overhead [71][180]
Cooperative efforts among multiple Enhancing Workload distribution, in distributing [181]
Task . . . . -
. UAVs for offloading and processing ~ system proximity, and resource collaborative workloads [115]
Collaboration PO . .
tasks performance availability across multiple mobile
edge nodes
. . 5
. Management and optimization of Optimizing Energy consumption, 84 Ofﬂgadmg decisions [1 X:]
Trajectory . . o can impact pre-planned [183][79]
UAV flight paths during task UAV communication . o
Control X o UAV flight routes and  [184]
offloading movements optimization . : -
trajectories [185]
56 Securing device [86] [167]
. Measures to protect data, Ensuring Authentication, encryption, identities, data [186]
Security . . . L >
communications, and system system access control and intrusion transmission and edge [ 184]
Management . . . . . .
integrity security detection Service access points

across wireless network

performance optimization. More economic models that
address complete overall cost-benefit tradeoffs using non-
technical metrics such as revenue generation are needed.
Current research focuses on technical layer enhancements to
reduce costs indirectly rather than through direct valuation
and monetization strategies. Costs in UAV-MEC offloading
networks can be better understood with more holistic
frameworks that incorporate both technical and economic
dimensions. Notably, the total number of papers reflected in
Table 6 exceeds 477 since these papers could address several
research topics.

VIIl. TECHNIQUES USED TO ENHANCE TASK
OFFLOADING IN UAV-MEC

This section reports the answer to RQS5. Some major
strategies that have improved task offloading decision-
making in UAV-MEC networks include the following:
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A. MACHINE LEARNING AND REINFORCEMENT
LEARNING

Machine learning and reinforcement learning are strategies
that include training models to optimize offloading decisions
based on previous experiences and feedback. Algorithms as
Q-learning and deep Q-networks can learn from previous
data to make intelligent task offloading decisions [190].
DRL is a machine learning subfield that combines deep
learning and reinforcement learning techniques. It can be
used to optimize the decision-making process for task
allocation and offloading in the context of task offloading
in the UAV-MEC network [191]. The UAV-MEC can learn
to make intelligent decisions based on its current state,
environmental factors, and desired objectives by training an
agent using DRL algorithms [192]. To make efficient task
offloading decisions, DRL can consider factors, such as cost,
energy consumption, latency, and QoS requirements [193].
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The authors of [194] optimized the computation offloading
process in a wireless sensor network for marine renewable
energy smart grids. This system aimed to minimize energy
consumption and improve the efficiency of the smart grid
by offloading computational tasks from the sensors to
the UAV-MECs. The offloading decisions are based on
factors, such as CPU utilization, transmission time slots,
transmission power, and computing resource utilization.
Various optimization algorithms and techniques, such as
duality-based optimization, game theory, and reinforcement
learning, are employed to achieve energy optimization and
cost reduction.

B. CONTEXT AWARENESS

Dynamic context elements in the communication layer such
as available bandwidth, delays, channel quality, computing
loads, movement patterns, and energy limits while offloading
are considered. UAV-MEC networks can adjust their offload-
ing tactics based on the current environment [195]. The
research paper [128] focused on addressing the challenges
of deploying a multi-UAV system for data collection in
infrastructure-deficient environments. The paper proposed
a solution that optimizes the trajectory planning of the
Access UAV-MEC (A-UAV) to ensure fair access to
dynamically moving Inspection UAV-MECs (I-UAVs) in
different time slots. The optimization model aims to minimize
the distance traveled by the A-UAV and generate a fair
access schedule for the I-UAVs. Additionally, the paper
introduces a Lyapunov-based online optimization approach
to minimize energy consumption and queue backlogs in
the system.
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C. GAME THEORY

By modeling the task offloading problem as a non-
cooperative game, effective strategies can be derived utilizing
ideas such as Nash equilibria. Game theory can aid in
the analysis of interactions between UAV- MEC nodes
and terminal devices, as well as the identification of
the appropriate offloading strategies that maximize overall
network performance [134]. The goal in [196] was to
optimize a cost function based on energy and latency
by cooperatively optimizing task offloading, MEC server
choice, transmission power, UAV path, and CPU frequency
allocation. In order to address this issue, the authors proposed
an alternating iterative approach using the block descent
method. The approach consists of three layers: the first layer
utilizes a game theoretic approach to solve the subproblems
of task offloading and server selection. The second layer
handles the transmission power allocation through a geo-
metric waterfalling technique and optimizes the UAV-MEC
trajectory via successive convex approximation. The third
layer address the computational resource subproblem by allo-
cating CPU frequencies through a gradient descent method.
To reduce the computation time, the proposed method
divides the UAV-MEC flight trajectory into shorter timeframe
segments.

D. AUCTION-BASED APPROACHES

Using auctions between devices and UAV-MEC nodes
can allow for distributed and efficient work allocation.
Devices can bid to have their tasks offloaded to UAV-
MEC nodes, and the allocation is dependent on the bids.
This method enhances justice and efficiency in decision-
making while offloading tasks [162]. For instance, the
author in [197] proposed an online auction mechanism for
task offloading with privacy preservation in a UAV-assisted
mobile edge computing network. The network consisted
of a group of UAVs that serve as flying edge servers to
provide computing services to terminal devices. The authors
proposed a privacy-preserving task offloading mechanism
that enables terminal devices to securely offload their
computational tasks to nearby UAV-MECs without revealing
their private data. The mechanism uses homomorphic encryp-
tion and secret sharing techniques to ensure data privacy
and security.

E. CLUSTERING AND GROUP COORDINATION

By organizing nodes into clusters led by UAV-MEC cluster
heads, coordinated offloading within groups can be facili-
tated. UAV-MEC networks can maximize resource consump-
tion and overall system performance by grouping devices and
coordinating their offloading decisions [198]. The authors
of [120] proposed a multi-UAV computing framework
that enables UAV-MECs to offload computing tasks from
IoT devices and perform computing tasks collaboratively,
thereby reducing energy consumption and improving the data
transmission efficiency of the IoT network. They used a
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clustering algorithm to group the IoT devices based on their
geographical locations and communication requirements.
The UAV-MECs are then assigned to clusters based on
their computing capabilities and energy levels. The authors
also proposed a task scheduling algorithm that enables the
UAVs to efficiently offload the computing tasks from the
IoT devices to the UAVs and perform the computing tasks
collaboratively.

F. DEADLINE-AWARE SCHEDULING

It is critical to consider work completion deadlines when
meeting real-time requirements. UAV-MEC networks can
schedule activities in a way that ensures timely processing
while minimizing latency by including deadline limitations in
the offloading decision-making process [152]. For example,
the work in [199] focused on optimizing task offloading and
UAV-MEC scheduling to maximize service satisfaction. The
research aimed to enhance the user experience and system
performance by considering factors such as task offloading
decision, UAV selection, transmission power allocation, and
UAV-MEC trajectory optimization. The goal was to minimize
energy consumption, reduce latency, and improve overall
system efficiency.

G. PRIORITY-BASED QUEUEING

By prioritizing key jobs in queues, latency-sensitive pro-
cesses can be optimized. UAV-MEC networks can ensure
that time-critical jobs are performed with minimal delay by
assigning higher priorities to them, boosting overall system
performance [200], [201]. The model in [202] considered
the dynamic changes in computing tasks produced by the
inner-city transportation network, in which the task delay
was calculated by queueing theory. When the number of
tasks exceeds the capacity of edge servers, some tasks are
offloaded to UAV-MECs. The goal is to minimize task delay
and computing costs.

H. OFFLOADING AND CACHING COORDINATION

Using caching results from prior offload decisions can reduce
redundant processing. UAV-MEC networks can reduce
computational and communication overhead by storing and
reusing previously offloaded results, resulting in increased
efficiency [203]. The two time scales in [204] joined service
caching and task offloading for UAV-assisted MEC are
used to optimize the caching and offloading decisions in a
coordinated manner, taking into account the dynamic nature
of the network and the varying demands of the users. This
was done by considering two-time scales: a short time
scale for caching decisions and a longer time scale for
offloading decisions. At the short time scale, the system
dynamically determined which services or data should be
cached at the edge servers or UAVs based on the current user
demands and network conditions. The approach helped to
improve the response time for frequently requested services
and reduced the need for frequent data transfers. At a
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longer time, scale, the system decided when and which
tasks should be offloaded from user devices to edge servers
or cloud resources. The decision was based on factors
such as the computational capabilities of the user devices,
the availability of edge servers or cloud resources, and
the network conditions. By intelligently offloading tasks,
the system can optimize its overall system performance
and energy efficiency. A comparison of techniques used
to enhance task offloading in UAV-MEC is illustrated
in Table 7.

According to Table 7, DRL is often used for solving
task offloading problems in UAV-MEC. In the context
of task offloading in UAV-MEC, DRL algorithms can be
employed to make intelligent decisions on when and where
to offload tasks to UAV-MEC servers, considering factors
such as network circumstances, resource availability, and
task requirements. DRL algorithms can adapt to dynamic
and uncertain environments, allowing UAV-MECs to make
real-time decisions based on changing conditions [227].
This is particularly important in UAV-MEC systems, where
network conditions and resource availability can vary rapidly.
DRL enables UAVs to learn optimal offloading policies
through trial and error, improving the overall performance
and efficiency of the system [228]. By continuously
interacting with the environment and receiving feedback,
UAV-MECs can learn to help improve offloading decisions
over time.

Furthermore, Table 7 shows that context awareness
allows dynamic adaptation to varying network conditions,
but collecting and disseminating real-time context infor-
mation adds overhead. In the context of game theory,
it provides a mathematical framework to model complex
interactions but deriving optimal strategies can be com-
putationally intensive. Auction-based approaches distribute
resource allocation in a self-organizing manner, but auction
design and coordination introduce complexity. Furthermore,
clustering facilitates group cooperation; however, given
network dynamics, determining optimal cluster structures
and leadership is difficult. Although deadline-aware schedul-
ing ensures latency sensitivity, incorporating deadlines
strictly limits optimization. Although computational profiling
enables selective offloading, task resource estimations are
not always accurate. Priority queueing ensures time-critical
processing, but unfairness can occur with higher priority
tasks. Caching past results leverage temporal task correlations
for efficiency gains, but cache management introduces
storage overhead. Therefore, in the future, hybrid models
can be evaluated to balance trade-offs based on application
needs. For optimal offloading governance in real-world UAV-
MEC networks, system designs must be optimized across
techniques.

IX. TYPES OF TASKS OFFLOADED TO UAV-MEC

This section reports the answer to RQ6. In UAV-enabled
MEQC, various types of tasks can be offloaded to optimize
resource utilization and improve overall system performance.
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TABLE 7. Techniques used to enhance task offloading in UAV-MEC.

Number of Limitations Examples
Technique Description Advantages Disadvantages publications of Related
studies
. These techniques involve - Can learn from historical . 167 Reliance on large  [204] [108]
Machine . . - Requires a large amount )
. training models to data to make informed L datasets, [164] [70]
learning and - . .. of training data. . :
. optimize offloading decisions. . computationally [205]
reinforcement e . - May have high . .
X decisions based on past - Can adapt to changing . expensive training
learning . L computational overhead.
experiences and feedback.  network conditions. process
Considers dynamic - Allows for more 74 Overhead of [137][206]
context factors such as informed offloading - Requires accurate and up- continuously [129][207]
Context available bandwidth, decisions. to-date context information. monitoring dynamic ~ [208]
awareness delays, computation loads, - Can adapt offloading - May have high overhead context parameters
mobility patterns, and strategies based on the for context sensing.
energy constraints. current context.
i 311209
. . . S 4
Models_ the task - Analyzes interactions - Requires knowledge of 42 AS.S umptions O.f “,6 1(209]
oftloading problem as a rational behavior [87][210]
. between UAVs and MEC game theory concepts and 5
non-cooperative game to . may not always [211]
Game theory . . . nodes. techniques. .
derive optimal strategies L. . hold in real
. - Maximizes overall - May have high
using concepts such as . . deployments
o network performance. computational complexity.
Nash equilibria.
- 1 . . 719 2
. Uses auctions among Pro.motes' fairness and - Requires a well-designed 6 Delay and. signaling [212] [213]
Auction- . efficiency in task . . overhead in [161]
devices and UAV-MEC . auction mechanism. S
based L offloading. - Enables . coordinating
nodes for distributed and - . - May have high .
approaches . . optimal allocation based L auctions
efficient task allocation. on bids communication overhead.
i i . . . i 167][214
. Organizes nodes into - Optimizes resource - Requires efficient 30 Managlng [ 'U [ , ]
Clustering clusters led by UAV R i . . coordination across [174][81]
e utilization within clusters. clustering algorithms. c
and group cluster heads to facilitate . large numbers of [215]
L . . - Improves overall system - May have high overhead
coordination coordinated offloading S clusters/groups
L performance. for cluster coordination.
within groups.
. - Requires accurate 20 Challenges in 182][216
- Ensures timely equn Heng [182] [216]
. . . X S estimation of task optimizing [217][218]
Deadline- Considers task completion  processing and minimizes S .
R completion times. schedules with [219]
aware deadlines to meet real- latency. . . .
. . . . - May have high variable application
scheduling time requirements. - Meets real-time . .
. computational overhead for deadlines
requirements. .
scheduling.
- ili 2207722
Lo Prioritizes critical tasks in [mproves overall system - Requires accurate task ? Inability to . [220] [221]
Priority- . performance. L . guarantee strict
queues to optimize . prioritization mechanisms. ..
based .. - Ensures timely . priority-based
. latency-sensitive . .. - May have high overhead 4
queueing . processing of critical execution under
processing. for queue management.
tasks. load
- i i i i isi 3711222
. Leverages results caching - Reduces computation Requlreg efﬁment caching 15 Caching decisions  [137] [_“, ]
Caching and . L and coordination based on [223] [224]
- from previous offload and communication . o o
offloading mechanisms. predictions may not  [225]

coordination

decisions to minimize
redundant processing.

overhead.
- Improves efficiency.

- May have high storage
overhead

always hold true

These tasks can be categorized into different types based
on their characteristics and requirements. The following are
some of the different types of tasks that can be offloaded to
UAV-enabled MEC:

A. COMPUTATION-INTENSIVE TASKS

These tasks require significant computational resources and
can benefit from offloading to the UAV or the edge cloud.
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Examples include, complex data processing, machine learn-
ing algorithms, and image/video analytics [229]. Running
pre-trained deep learning models for on-device predictions
and classifications. Offloading of machine learning inference
refers to the process of transferring the computational tasks
from a terminal device to the UAV-MEC infrastructure.
This offloading is performed to increase computational
capabilities and resources available in the UAV-MEC, thereby
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improving the efficiency and performance of the inference
process [230]. For example, the paper [48] explored the
use of DRL and SDN techniques in UAV-assisted net-
works to improve computational resource efficiency. The
task offloading process starts with the identification of
computationally intensive tasks by the terminal devices. The
task offloading request was then sent to the DRL-SDN,
which analyzed the request and determine the appropriate
network resources and UAV-MEC allocation for task pro-
cessing. The DRL-SDN configured rule installation based
on state observations and evaluation indicators such as
network congestion, computational capabilities, and energy
efficiency. The terminal device transmitted the task data
to the designated UAV-MEC for processing, and once
completed, the SDN notified the terminal device about
the status.

B. DATA-INTENSIVE TASKS

These tasks involve the transmission and processing of
large amounts of data. Offloading these tasks to the UAV-
MEC can reduce the latency and bandwidth requirements on
the terminal device. Examples include, big data analytics,
data mining, and data aggregation [231]. Offloading data-
intensive tasks to UAV-MEC offers advantages such as,
reduced latency, optimized bandwidth usage, efficient data
processing, and improved energy efficiency. These benefits
make UAV-MEC a promising approach for handling data-
intensive tasks in various domains [192]. For instance,
the Flying-RIS in [232] is a UAV-MEC equipped with
a programmable meta-surface that can reflect and refract
the wireless signals to improve the signal quality and
coverage of the UAV-MEC network. The authors proposed
a joint optimization framework for trajectory planning,
phase shift design, and IoT device big data association
to maximize network performance. The framework consid-
ered the channel conditions, computing capabilities, and
energy levels of the IoT devices and the MEC server.
The authors also proposed a DDPG-based approach to
predict channel conditions and optimize the Flying-RIS phase
shift design.

C. LATENCY-SENSITIVE TASKS

These tasks have strict latency requirements and need to
be processed quickly. Offloading these tasks to the UAV-
MEC can reduce the processing time and improve real-time
responsiveness. Examples include, AR/VR applications, real-
time video streaming, and online gaming [233]. Certain
tasks, such as AR, real-time video streaming, and online
gaming, have very strict latency requirements due to their
interactive and real-time nature. Processing these latency-
sensitive tasks on terminal devices alone may not meet
the low latency needs as mobile CPUs/GPUs have limited
capacity. Offloading such latency-critical tasks to UAV-
MEC resources can help reduce the overall task processing
latency [234].
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The algorithm in [235] combined the advantages of two
other algorithms: the DDPG algorithm for continuous action
spaces and the Generalized Stochastic Approximation (GSA)
algorithm for off-policy learning. In a disaster scenario, UAV-
MECs analyzed and processed the collected data. However,
the time it took to complete this process can be critical,
especially in situations where resources are limited or where
there is an urgent need for information. The WMDDPG-
GSA algorithm could help optimize task completion time by
learning an optimal policy for controlling UAVs and MECs
in a disaster scenario.

D. ENERGY-INTENSIVE TASKS

Energy intensive tasks consume significant energy on the
terminal device. Offloading these tasks to the UAV-MEC
can reduce energy consumption and extend the battery
life of the terminal device. Examples include, complex
simulations, cryptographic operations, and intensive signal
processing [236]. Due to their resource-intensive computa-
tions, tasks such as complex simulations, intensive crypto-
graphic operations, and signal processing impose high energy
demands on terminal devices. Performing such energy-
intensive tasks on resource-constrained terminal devices can
quickly drain the battery. This results in poor battery life
and a poor user experience. Offloading these computationally
heavy duties to resources with an adequate power supply such
as UAV-MEC can help reduce the energy consumption on
terminal devices.

The authors of [237] proposed a joint optimization
framework for task routing, UAV-MEC placement, and IRS
phase shift design to minimize task completion time and
energy consumption. The framework considered channel
conditions, computing capabilities, and energy levels of
the UAV-MECs-IRSs, and IoT devices. The authors also
proposed a DRL-based approach to enable the UAV-MECs to
learn the optimal task routing decisions based on the current
network conditions.

E. AR/VR RENDERING AND GAMING

Offloading of AR/VR rendering refers to the process of
transferring the computational tasks involved in rendering
AR or VR content from a terminal device to a remote
UAV-MEC infrastructure [238]. This offloading is typically
performed to leverage the higher computational capabilities
and resources available on UAV-MEC servers, resulting in
improved performance and user experience. The offloading
process involves sending the raw sensor data (such as camera
feed or motion tracking data) from the AR/VR device to
the UAV-MEC. The server then performs resource-intensive
rendering tasks, such as 3D modeling, image processing,
and graphics rendering, and sends the processed data to the
AR/VR device for display [239]. On the other hand, portions
of intensive mobile games, such as environment rendering,
physics simulations, and Al are also offloaded to UAV-MEC.
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This offloading mechanism is commonly used in cloud
gaming, where the heavy computational tasks required for
gaming are performed on powerful servers and the processed
data are streamed back to the user’s device for display and
interaction, but in the case of immersive gaming or immersive
VR/AR where the latency is critical the UAV-MEC can be
used for offloading [240]. The paper [241] demonstrated
the potential of a UAV-aided hybrid cloud/mobile-edge
computing architecture to meet the complex demands of
future Extended Reality (XR) applications by leveraging
the capabilities of the central cloud, edge computers, and
UAV-MECs. The paper categorized XR devices into two
types: strong and weak devices. It introduces a cooperative
NOMA scheme that pairs strong and weak devices to enhance
QoE of users for XR devices. The scheme intelligently
selected either direct or relay links for weak XR devices.
To strike a balance between system throughput and fairness,
the paper formulated a sum logarithmic-rate maximization
problem.

F. LOCATION-BASED TASKS

Certain tasks require up-to-date location-based information
or location-aware services to function properly. Examples
include, GPS navigation, location-targeted advertising, and
analysis of geospatial sensor data. Offloading these kinds of
tasks to UAV-MECs can take advantage of their mobility.
UAV-MECs are not stationary such as traditional edge devices
but can move through the airspace and dynamically collect
real-time data about the environment [242]. By performing
location-dependent computations on the UAV itself, tasks
such as GPS navigation can benefit from the UAV’s
immediate knowledge of its current coordinates [243]. The
authors of [244] considered a scenario where UAV-MECs
are used to collect data and perform computations in
areas affected by a disaster, and where there are limited
computational resources available on the ground. The
authors proposed an algorithm that used the concept of
“parking resources” to schedule computation tasks among
the available UAV-MECs depending on location. Parking
resources refer to the computational resources that are
available on the UAVs while these resources are not in
flight, such as when resources are landing or recharging.
The algorithm aims to minimize the total completion time
of all computation tasks while ensuring fairness among
the UAV-MECs.

G. SECURITY-SENSITIVE TASKS

Some computational tasks involve sensitive data that
needs to be securely processed and protected for privacy
reasons. Examples include, encrypting confidential infor-
mation, authenticating users, and analyzing surveillance
video footage. Offloading these types of security-critical
tasks to UAV-MEC servers can help enhance security and
privacy compared to performing them in the cloud [245].
By pushing sensitive workloads to the UAV-MEC edge,
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sensitive data do not need to travel long distances through
the internet backbone to reach remote cloud data centers.
It is important to note that the suitability of task offloading
depends on various factors, such as network conditions,
task characteristics, and resource availability. The decision
to offload a specific task in UAV-MEC is typically based
on optimizing performance metrics such as latency, energy
consumption, and resource employment. This classification
helps identify suitable use cases [246], [247]. The approach
in [132] involved learning a risk function that quantifies
the risks associated with different task offloading strategies
and then selecting the strategy with the lowest risk. The
risk function considered factors such as network conditions,
UAV-MEC resources, and mission requirements and was used
to evaluate different task offloading strategies. The strategy
with the lowest risk was selected for execution in real-
time, allowing for adaptive decision-making based on current
network conditions and mission requirements. The approach
used RL techniques to learn the risk function over time
based on feedback from real-world task offloading scenarios.
By continuously learning from feedback and adapting to
changing network conditions, the approach can help ensure
that IoT tasks are executed efficiently and effectively while
minimizing the risks associated with task offloading in
UAV-MECs. Table 8 compares types of tasks offloaded to
UAV-MEC server.

Table 8 categorizes different types of tasks that can benefit
from UAV-MEC offloading based on their characteristics
and requirements. This classification helps identify suit-
able use cases. Performance improvement in computation-
intensive, energy-intensive, and graphics-heavy AR/VR
tasks can be achieved by leveraging more UAV-MEC
resources for processing. Moreover, latency-sensitive tasks
benefit as proximity to UAV-MEC lowers overall processing
latency, improving real-time responsiveness for applica-
tions. Location-dependent tasks are well-suited for UAV-
MEC offloading given UAV mobility and the ability to
dynamically process environmental sensor data. Further-
more, security-sensitive tasks enjoy enhanced security by
avoiding long-distance transit through untrusted networks
and local processing at the protected UAV/edge layer.
A wide range of applications from diverse domains such as
analytics, gaming, mapping, and surveillance can take advan-
tage of UAV-MEC infrastructure based on their workload
characteristics.

X. OPEN ISSUES ON TASK OFFLOADING IN UAV-MEC
This section reports the answer to RQ7. Task offloading in
UAV-MEC faces several open issues, which are actively being
investigated. The following are some key challenges and open
issues in this field:

A. MOBILITY CHALLENGES ON TASK OFFLOADING IN
UAV-MEC

The high mobility of UAV-MECs can have a significant
impact on the task offloading process in UAV-MEC networks.
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TABLE 8. The comparison of different types of tasks offloaded to UAV-MEC server.

As UAV-MECs travel through different areas, they
may encounter varying network conditions, such as
signal strength and interference. These unstable network
connections can have an impact on task offloading
reliability and performance [259].

Dynamic Resource Availability: As UAV-MECs move,
the availability of computing and communication

2)
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Security Benefits of Numbe Limitations Examples
Task Type Description Example Tasks Resource Latency Sensitiv Energy UAV-MEC v of of
Intensive Sensitive Intensive Oftloading publica publicati
tions ons
Computation  Tasks requiring Image High CPU  Medium- Low Medium Leverage higher 48 Limited [102,
-Intensive intensive CPU analysis, Usage Low (50  (Not (Moderate computing resources on 122, 128,
Tasks processing modeling, and (>75%) ms-20 ms)  directly energy power of individual 248]
simulation dealing usage) UAV/edge to UAVs may not
with improve support
sensitive efficiency and large/complex
data) performance. models and
algorithms
Energy- Tasks requiring GPU-heavy Variable Variable Low Very High Reduce latency 126 UAV battery [67, 167,
Intensive significant tasks, sensor (Not (Heavily and optimize and processing 223, 249,
Tasks energy streaming directly constraine  bandwidth usage constraints 250]
dealing d by on terminal impact
with available devices. onboard
sensitive  energy/bat execution
data) tery
levels)
Latency- Tasks requiring AR/VR, Variable Very High ~ Variable  Variable Lower 82 Unreliable [127,
Sensitive low latency controls, real- (<5 ms) processing time wireless links 251-253]
Tasks time analytics to improve real- affect real-time
time responsiveness
responsiveness. for tasks with
tight deadlines
Data Tasks related to Storing large High Low (>50 Medium Low Reduce energy 3 Limited [107,
intensive file/data storage maps/datasets, Storage ms) (Some (Minimal consumption to onboard 109, 163
Tasks and backups Usage protectio  impact on extend mobile storage 177, 225]
(>75%) nneeded  energy battery life. capacities pose
based on  resources) challenges for
sensitivi large datasets
ty of
data)
AR/VR Graphics- 3D modeling, High High (5 Low High Leverage higher 9 Resources
Rendering intensive environment CPU, ms-20ms)  (Not (Significa computing required for
and gaming rendering views GPU, and directly nt portion power of high-fidelity
Storage dealing of energy UAV/edge to graphics may
(>75%) with budget improve exceed
sensitive  consumed  performance and UAV/edge
data) ) user experience. server
capabilities
Localization Location/environ ~ Drone Medium High (5 Medium  Medium Take advantage 19 Sensors and [113,
and Mapping  ment mapping navigation, CPU, ms-20ms)  (Some (Moderate  of UAV mobility computing 137, 254-
tasks autonomous Storage (< protectio  energy and onboard limits onboard 256]
vehicles 75%) nneeded usage) sensing for real- UAUVs for real-
based on time location- time positional
sensitivi dependent needs
ty of processing.
data)
Security- Tasks involving  Authentication ~ Medi Medium  Very High  Medium Enhance 58 Onboard CPUs  [58, 159,
Sensitive sensitive data , encryption, um (20- (Requires (Moderate security and have restricted 212, 257,
Tasks access control CPU 50ms) strict energy privacy by capability to 258]
(< security usage) processing handle
75%) controls locally at encrypting/aut
and UAV/edge with henticating
hardware fewer access sensitive
isolation) points. payloads
There are several ways in which high mobility can affect task resources can change rapidly. Decisions about task
offloading: offloading must consider dynamic resource availability
1) Communication Disruptions: Because UAV-MECs and select the best UAV-MEC server for offloading
are mobile, their location and connectivity with the based on factors, such as proximity, resource utilization,
ground network can change frequently. This can cause and netv.vork .Condltlons [260].
communication breakdowns and task offloading delays. 3) Task Migration and Handover: Tasks can be offloaded

from terminal devices to UAVs in UAV-MEC networks
and vice versa. Due to high mobility of UAV-MECs,
task migrations between UAVs and terminal devices
may occur frequently as they move into and out of
each other’s coverage areas. To minimize disruptions
and ensure efficient task execution, this task migration
process must be carefully managed. Due to the high
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mobility of UAV-MECs, frequent handovers for user
terminals or IoTs between different UAV-MECs may
occur [261]. These handovers add extra communication
overhead, such as signaling and control messages, which
can reduce task offloading efficiency. This can to rapid
change of network topology in UAV-MEC systems
due to the mobility of UAV-MECs, making it chal-
lenging to maintain stable and reliable communication
links [262].

B. SECURITY CHALLENGES ON TASK OFFLOADING IN
UAV-MEC

Task offloading in UAV-MEC systems brings several security
challenges that need to be addressed to ensure the integrity,
confidentiality, and availability of data and services. These
challenges include the following:

)

2)

3)

4)

5)

6)

Data Privacy and Confidentiality: When offload-
ing tasks to MEC servers on UAVs, sensitive
data may be transmitted through wireless chan-
nels, increasing the susceptibility to eavesdropping
and unauthorized access. Ensuring data privacy and
confidentiality is crucial for protecting sensitive
information [84].

Authentication and Authorization: UAV-MEC sys-
tems require robust authentication mechanisms to verify
the identity of both the UAV-MEC server and terminal
devices. Unauthorized access to the system can lead
to malicious activities, data breaches, and service
disruptions. Proper authorization mechanisms should
also be in place to control access to resources and
prevent unauthorized task offloading [259].

Integrity and Trustworthiness: Task offloading
involves transmitting data and code between the UAV-
MEC server and terminal devices. Ensuring the integrity
of the transmitted data and code is essential for
preventing tampering, unauthorized modifications, and
the injection of malicious code. The trustworthiness of
the UAV-MEC server is also crucial for ensuing that
it executes the offloaded tasks correctly and does not
compromise the system [263].

Malware and Intrusion Detection: UAV-MEC systems
are vulnerable to malware and intrusion attacks. Mali-
cious code can be injected into the offloaded tasks,
compromising the integrity and security of the system.
Robust malware and intrusion detection mechanisms
should be implemented to detect and mitigate such
threats [259].

Resource Sharing and Isolation: Multiple UAV-
MECs are raising concerns about resource sharing
and isolation. Proper mechanisms should be in place
to ensure that each UAV-MEC’s tasks and data are
isolated from others, preventing unauthorized access and
interference [58].

Access control: Task offloading involves granting
access to different users or systems. It is important
to implement strong access control mechanisms, such
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7)

8)

9)

as multi-factor authentication and least privilege prin-
ciples, to ensure that only authorized individuals or
systems can access the offloaded tasks [264].
Vendor-specific Vulnerabilities: When using UAV-
MECs from different vendors in UAV-MEC swarm
cooperation, it is important to consider that each
vendor may have different security vulnerabilities.
Conducting thorough security assessments and audits
of UAV-MECs and their associated software and hard-
ware components can help identify and address these
vulnerabilities [265].

Blockchain Cryptocurrency Fees: The cryptocur-
rency fees on the blockchain platform are used to
reward miners who successfully manage their mined
blocks into the blockchain for all transactions [266].
To encourage UAV-MEC providers to contribute their
computational resources to blockchain mining, a new
incentive mechanism is required. At the same time,
the required incentive mechanism can prevent some
UAV-MEC providers from cooperating on the private
blockchain [267].

Blockchain Time for Agreement: The consensus
procedure in the blockchain is well known to take the
most time during transaction generation. However, the
number of UAV-MEC servers in a private blockchain is
limited, which significantly reduces the consensus time
[268], [269].

C. COMMUNICATION AND RESOURCE CONSTRAINTS
CHALLENGES ON TASK OFFLOADING IN UAV-MEC

Task offloading in UAV-MEC systems presents several
communication and resource constraint challenges that need
to be addressed to ensure accurate decision making. These
challenges include the following:

Y

2)

3)

4)

Limited bandwidth and high latency: UAV-MECs
operate in wireless communication networks, which
may have limited bandwidth and high latency, making it
challenging to offload tasks efficiently. UAV-MECs may
experience intermittent or unreliable communication
links due to factors, such as signal interference or
obstacles, which can affect the reliability of task
offloading [126].

Limited computing resources: UAVs have limited
computing resources compared to traditional terrestrial
MEC servers, which can limit the types and sizes of tasks
that can be offloaded [270].

Offloading decision algorithms: Developing efficient
and intelligent algorithms to make optimal task offload-
ing decisions based on factors, such as task character-
istics, network conditions, and resource availability is a
complex challenge [271].

Dynamic task offloading: Task offloading decisions
need to be made dynamically in real-time, considering
the changing network conditions, task requirements, and
resource availability, which requires efficient decision-
making mechanisms.
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5) Trade-off between local and remote processing:
Determining whether to offload a task to a remote MEC
server or process it locally on the UAV involves con-
sidering factors, such as latency, energy consumption,
and resource availability, which requires careful trade-
off analysis [250].

D. SCALABILITY AND INTEROPERABILITY CHALLENGES
ON TASK OFFLOADING IN UAV-MEC

Task offloading in UAV-MEC systems brings several scal-
ability and interoperability challenges that need to be
addressed to ensure the large-scale UAV-MEC networks.
These challenges include the following:

1) Managing a large-scale UAV-MEC system with numer-
ous UAVs and servers while ensuring efficient task
offloading and resource management is a non-trivial
task.

2) Designing scalable architectures, protocols, and algo-
rithms to handle the increasing system complexity is an
open issue [272].

3) Ensuring interoperability and standardization across
different components and interfaces is crucial for
seamless integration and widespread adoption of UAV-
MEC technologies.

4) The development of common frameworks, protocols,
and standards is an ongoing effort [273].

E. CHALLENGING OF DYNAMIC PRICING ON TASK
OFFLOADING IN UAV-ENABLED MEC

The challenges of dynamic pricing on task offloading in
UAV-enabled MEC can be attributed to several factors. The
following are some key challenges:

1) Resource Allocation: Dynamic pricing requires effi-
cient resource allocation to ensure optimal task offload-
ing. This involves determining the appropriate allocation
of computing resources, network bandwidth, and energy
consumption for each task offloaded to the UAV-enabled
MEC network [274].

2) Real-time Pricing: Dynamic pricing relies on real-
time information and market conditions to determine
the pricing for task offloading. This requires accurate
and up-to-date data on resource availability, network
conditions, and user demands. Ensuring the availability
and accuracy of this information can be a challenge in
UAV-enabled MEC systems [233].

3) Task Scheduling: Dynamic pricing necessitates effi-
cient task scheduling to maximize resource utilization
and minimize costs. Task scheduling involves deter-
mining the order and timing of task offloading to
optimize resource allocation and meet user require-
ments. However, in UAV-enabled MEC systems, the
mobility of UAVs and the dynamic nature of the network
environment can complicate task scheduling [275].

4) Quality of Service (QoS): Dynamic pricing should
consider the QoS requirements of different tasks and
users. QoS parameters such as latency, reliability, and
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throughput need to be considered when determining
the pricing for task offloading. Ensuring that the
QoS requirements are met while optimizing resource
allocation and pricing can be a challenge in UAV-
enabled MEC systems [276], [277].

5) User Fairness: Dynamic pricing should also consider
fairness among users. It is important to ensure that the
pricing strategy does not favor certain users or tasks over
others. Achieving fairness in task offloading and pricing
can be challenging, especially when there are varying
user demands and resource constraints in UAV-enabled
MEC systems [189].

6) Security and Privacy: Dynamic pricing involves the
exchange of sensitive information between users, UAVs,
and MEC servers. Ensuring the security and privacy
of this information is crucial for maintaining user trust
and protecting against unauthorized access or data
breaches. Implementing robust security measures and
privacy-preserving mechanisms can be challenging in
UAV-enabled MEC systems [37].

7) Pricing Uncertainty: As prices change dynamically
based on network load and demand, there is uncertainty
for UAV-MECs in determining optimal offloading
strategies to minimize costs [278].

8) Delayed Pricing Information: UAV-MECs may not
have timely access to the latest price updates from
global originalities in large networks, making offloading
decisions suboptimal [279], [280].

9) Non-cooperative Servers: Different UAV-MEC servers
operators may adopt non-cooperative pricing policies
making it difficult for UAV-MECs to coordinate
offloading across multiple servers [240].

10) Limited UAV-MEC Resources: UAVs have constraints
such as energy, bandwidth, and processing, and dynamic
pricing can further strain them if offloading decisions are
not optimized carefully [281].

11) Mobility Factor: The fast movement of UAV-MECs
means that pricing and network conditions change
rapidly, requiring dynamic real time offloading adapta-
tion [256], [282].

s

XI. CONCLUSION

We established a path for categorizing and organizing
the various aspects of UAV-based MEC task offloading
architectures by conducting a systematic mapping study. This
is intended to help researchers and practitioners navigate
the emerging trend of using UAVs for task offloading.
In addition, we addressed critical topics such as scenar-
ios, core network considerations, and task types for task
offloading in UAV-MEC networks. We have contributed to
improving task offloading and overall system performance
by investigating the techniques used in offloading decision-
making in UAV-MEC networks. In addition, we identified
the open issues within the UAV-enabled MEC offload-
ing ecosystem. We hope to inspire further research and
advancements in this field by shedding light on these areas.
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Future studies can focus on the real-world deployment and
evaluation of UAV-MEC systems for task offloading. This
can involve conducting field experiments, security studies,
and case studies to assess the performance, scalability, and
practicality of task offloading in UAV-MEC systems in
different application scenarios.

Systematic review studies, such as our SMS, can offer a
thorough examination of each aspect of task offloading in
UAV-MEC through a Systematic Literature Review (SLR).
Each of the main topics identified in this paper can be further
explored in future research to address more specific research
questions.

Based on the contributions of this SMS paper, several
promising directions for future research have emerged.
One potential area for investigation is to further explore
the use of advanced machine learning techniques, such as
deep reinforcement learning, to optimize task offloading
and resource management in highly dynamic UAV-assisted
MEC networks. Another promising area is to investigate
the potential of integrating blockchain technology for secure
and decentralized task offloading and resource manage-
ment with untrusted entities involved in task offloading.
Additionally, the role of multi-modal sensing and fusion
in enhancing task offloading and resource management
in UAV-assisted MEC networks should be investigated.
By addressing these open challenges and exploring these
future research directions, the research community can
further advance the state-of-the-art in UAV-assisted MEC net-
works and unlock new applications and services for the [oTs
and beyond.
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